Water Quality Prediction of Small Watershed Based on Wavelet Neural Network

分水岭 人工神经网络 水质 计算机科学 污染 小波 质量(理念) 数据挖掘 环境科学 机器学习 人工智能 生物 生态学 哲学 认识论
作者
Chuang Ma,Linfeng Li,Daiqi Zhou
标识
DOI:10.1109/cyberc.2019.00084
摘要

In recent years, China has faced a very serious issue of water pollution, which has had a dreadful impact on the ecological environment and human health. Due to the rapid growth of industry and economy, water pollution around China's urban areas has received extensive attentions. Among them, small watershed pollution, which is difficult to sample real-time data, is particularly prominent. Therefore, it is extremely important to propose new, better and more reliable prediction models to accurately predict the water quality in these small watersheds. This paper selects the water quality data of small watersheds around Chongqing for the study to come up with a new wavelet neural network model of forecasting using small amount of data to predict the China Water Quality Index (WQI). The present study is aimed to improve the prediction results by minimizing the prediction errors of current machine learning algorithms by considering the main environmental pollutant in small watersheds as input. The results show that when there is a strong interaction and correlation between the water quality characteristic attribute and WQI, the MAPE of the wavelet neural network model training results will decrease. In addition, the geographical location is found to play an important role in the Chongqing WQI forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素羊完成签到 ,获得积分10
1秒前
1秒前
小马甲应助小王采纳,获得10
1秒前
俭朴羊青完成签到,获得积分10
2秒前
张张完成签到,获得积分10
4秒前
tomorrow完成签到 ,获得积分10
5秒前
糖炒栗子完成签到,获得积分10
6秒前
现代期待完成签到,获得积分10
6秒前
小黎完成签到,获得积分10
7秒前
呼呼呼完成签到,获得积分10
7秒前
无花果应助晴云采纳,获得10
7秒前
寸草的晖完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
小燕子发布了新的文献求助10
10秒前
11秒前
顺顺完成签到,获得积分10
12秒前
jiachun完成签到,获得积分10
12秒前
jiaolulu发布了新的文献求助10
12秒前
小王发布了新的文献求助10
13秒前
queen814完成签到,获得积分10
13秒前
简单发布了新的文献求助10
14秒前
一只呆果蝇完成签到,获得积分10
14秒前
Eternity完成签到,获得积分10
15秒前
研友_VZG7GZ应助落后从阳采纳,获得10
15秒前
乐观寻绿完成签到,获得积分10
16秒前
Hover完成签到,获得积分0
16秒前
莫晓岚完成签到,获得积分10
16秒前
123完成签到 ,获得积分10
17秒前
所所应助JSY采纳,获得30
17秒前
默默的立辉完成签到,获得积分10
17秒前
Yh完成签到,获得积分10
17秒前
引子完成签到,获得积分10
19秒前
机智的阿振完成签到,获得积分10
20秒前
KatzeBaliey完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
yar应助大饼采纳,获得10
23秒前
mammer应助一朵云采纳,获得20
23秒前
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029