Water Quality Prediction of Small Watershed Based on Wavelet Neural Network

分水岭 人工神经网络 水质 计算机科学 污染 小波 质量(理念) 数据挖掘 环境科学 机器学习 人工智能 生物 生态学 哲学 认识论
作者
Chuang Ma,Linfeng Li,Daiqi Zhou
标识
DOI:10.1109/cyberc.2019.00084
摘要

In recent years, China has faced a very serious issue of water pollution, which has had a dreadful impact on the ecological environment and human health. Due to the rapid growth of industry and economy, water pollution around China's urban areas has received extensive attentions. Among them, small watershed pollution, which is difficult to sample real-time data, is particularly prominent. Therefore, it is extremely important to propose new, better and more reliable prediction models to accurately predict the water quality in these small watersheds. This paper selects the water quality data of small watersheds around Chongqing for the study to come up with a new wavelet neural network model of forecasting using small amount of data to predict the China Water Quality Index (WQI). The present study is aimed to improve the prediction results by minimizing the prediction errors of current machine learning algorithms by considering the main environmental pollutant in small watersheds as input. The results show that when there is a strong interaction and correlation between the water quality characteristic attribute and WQI, the MAPE of the wavelet neural network model training results will decrease. In addition, the geographical location is found to play an important role in the Chongqing WQI forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助Sjingjia采纳,获得10
1秒前
夏夏发布了新的文献求助10
1秒前
lwxuan完成签到,获得积分10
2秒前
yutang完成签到 ,获得积分10
2秒前
2秒前
Jasper应助禾晏采纳,获得10
3秒前
hanscao完成签到,获得积分10
3秒前
yu发布了新的文献求助10
6秒前
yolo完成签到,获得积分10
6秒前
cy4psych0完成签到,获得积分10
6秒前
6秒前
8秒前
酷波er应助肯瑞恩哭哭采纳,获得10
9秒前
9秒前
11秒前
Jasper应助禾晏采纳,获得10
11秒前
11秒前
没有蛀牙完成签到 ,获得积分10
11秒前
王子娇发布了新的文献求助10
12秒前
13秒前
夏夏完成签到,获得积分10
13秒前
阿冰发布了新的文献求助10
13秒前
科研蜗牛发布了新的文献求助10
14秒前
治治治关注了科研通微信公众号
14秒前
mochi完成签到,获得积分10
16秒前
豆子应助就晚安喽采纳,获得20
16秒前
16秒前
yu完成签到,获得积分10
16秒前
17秒前
18秒前
cym发布了新的文献求助10
18秒前
萝卜仔完成签到 ,获得积分10
18秒前
wanci应助熊金艳采纳,获得10
19秒前
Hello应助禾晏采纳,获得10
20秒前
纪贝贝完成签到,获得积分10
20秒前
卜靖荷完成签到,获得积分10
20秒前
21秒前
21秒前
zhanghw发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516