Water Quality Prediction of Small Watershed Based on Wavelet Neural Network

分水岭 人工神经网络 水质 计算机科学 污染 小波 质量(理念) 数据挖掘 环境科学 机器学习 人工智能 生物 生态学 哲学 认识论
作者
Chuang Ma,Linfeng Li,Daiqi Zhou
标识
DOI:10.1109/cyberc.2019.00084
摘要

In recent years, China has faced a very serious issue of water pollution, which has had a dreadful impact on the ecological environment and human health. Due to the rapid growth of industry and economy, water pollution around China's urban areas has received extensive attentions. Among them, small watershed pollution, which is difficult to sample real-time data, is particularly prominent. Therefore, it is extremely important to propose new, better and more reliable prediction models to accurately predict the water quality in these small watersheds. This paper selects the water quality data of small watersheds around Chongqing for the study to come up with a new wavelet neural network model of forecasting using small amount of data to predict the China Water Quality Index (WQI). The present study is aimed to improve the prediction results by minimizing the prediction errors of current machine learning algorithms by considering the main environmental pollutant in small watersheds as input. The results show that when there is a strong interaction and correlation between the water quality characteristic attribute and WQI, the MAPE of the wavelet neural network model training results will decrease. In addition, the geographical location is found to play an important role in the Chongqing WQI forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助云不暇采纳,获得30
1秒前
可轩发布了新的文献求助10
1秒前
mzone发布了新的文献求助10
1秒前
大个应助Walter采纳,获得10
3秒前
科目三应助正直的魔镜采纳,获得10
4秒前
4秒前
好叭发布了新的文献求助10
4秒前
研友_VZG7GZ应助愉快的雪巧采纳,获得10
4秒前
咸鱼在挖宝完成签到,获得积分10
4秒前
Hello应助都可以采纳,获得10
6秒前
6秒前
6秒前
wanci应助哈喽采纳,获得10
7秒前
Chuang完成签到 ,获得积分10
7秒前
lin应助uraylong采纳,获得10
7秒前
7秒前
lbq完成签到,获得积分10
8秒前
9秒前
赵辉完成签到,获得积分10
9秒前
潘盼盼完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
shan发布了新的文献求助10
10秒前
Shaw发布了新的文献求助10
11秒前
tyf发布了新的文献求助10
11秒前
12秒前
12秒前
czy完成签到,获得积分10
12秒前
12秒前
852应助忆枫采纳,获得10
12秒前
12秒前
八位元完成签到,获得积分10
13秒前
苗笑卉发布了新的文献求助10
13秒前
13秒前
13秒前
Owen应助njupt连赛通采纳,获得10
13秒前
14秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970683
求助须知:如何正确求助?哪些是违规求助? 3515337
关于积分的说明 11178055
捐赠科研通 3250580
什么是DOI,文献DOI怎么找? 1795357
邀请新用户注册赠送积分活动 875790
科研通“疑难数据库(出版商)”最低求助积分说明 805166