A Survey on Prediction of Suicidal Ideation Using Machine and Ensemble Learning

自杀意念 机器学习 随机森林 人工智能 集成学习 计算机科学 朴素贝叶斯分类器 决策树 阿达布思 支持向量机 社会化媒体 心理学 毒物控制 自杀预防 医学 万维网 环境卫生
作者
Akshma Chadha,Baijnath Kaushik
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (11): 1617-1632 被引量:26
标识
DOI:10.1093/comjnl/bxz120
摘要

Abstract Suicide is a major health issue nowadays and has become one of the highest reason for deaths. There are many negative emotions like anxiety, depression, stress that can lead to suicide. By identifying the individuals having suicidal ideation beforehand, the risk of them completing suicide can be reduced. Social media is increasingly becoming a powerful platform where people around the world are sharing emotions and thoughts. Moreover, this platform in some way is working as a catalyst for invoking and inciting the suicidal ideation. The objective of this proposal is to use social media as a tool that can aid in preventing the same. Data is collected from Twitter, a social networking site using some features that are related to suicidal ideation. The tweets are preprocessed as per the semantics of the identified features and then it is converted into probabilistic values so that it will be suitably used by machine learning and ensemble learning algorithms. Different machine learning algorithms like Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Decision Tree, Logistic Regression, Support Vector Machine were applied on the data to predict and identify trends of suicidal ideation. Further the proposed work is evaluated with some ensemble approaches like Random Forest, AdaBoost, Voting Ensemble to see the improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anyilin完成签到,获得积分10
4秒前
顾矜应助饭饭采纳,获得10
5秒前
香蕉班发布了新的文献求助10
5秒前
7秒前
JamesPei应助dongdongqiang采纳,获得50
7秒前
10秒前
Christina完成签到,获得积分10
11秒前
婧婧发布了新的文献求助10
13秒前
彭于彦祖应助小蜗采纳,获得30
13秒前
14秒前
15秒前
林剑立完成签到,获得积分10
19秒前
20秒前
婧婧完成签到,获得积分10
22秒前
CodeCraft应助高大的水米采纳,获得10
24秒前
开心冷霜发布了新的文献求助10
26秒前
27秒前
奇异果完成签到,获得积分10
27秒前
科目三应助MS903采纳,获得10
28秒前
哈哈哈哈哈完成签到,获得积分10
28秒前
伶俐雨泽发布了新的文献求助10
28秒前
一文字豪树完成签到,获得积分10
29秒前
JamesPei应助义气的慕卉采纳,获得10
30秒前
33秒前
KSDalton完成签到,获得积分10
36秒前
37秒前
42秒前
红宝完成签到,获得积分10
42秒前
Akim应助皓月星辰采纳,获得10
42秒前
spp完成签到 ,获得积分0
42秒前
42秒前
知之发布了新的文献求助10
43秒前
浮浮世世发布了新的文献求助10
43秒前
周周完成签到,获得积分10
44秒前
伶俐雨泽完成签到,获得积分10
44秒前
自觉的凛发布了新的文献求助10
47秒前
47秒前
ss发布了新的文献求助10
48秒前
shinysparrow完成签到,获得积分0
49秒前
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396