A Survey on Prediction of Suicidal Ideation Using Machine and Ensemble Learning

自杀意念 机器学习 随机森林 人工智能 集成学习 计算机科学 朴素贝叶斯分类器 决策树 阿达布思 支持向量机 社会化媒体 心理学 毒物控制 自杀预防 医学 万维网 环境卫生
作者
Akshma Chadha,Baijnath Kaushik
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (11): 1617-1632 被引量:26
标识
DOI:10.1093/comjnl/bxz120
摘要

Abstract Suicide is a major health issue nowadays and has become one of the highest reason for deaths. There are many negative emotions like anxiety, depression, stress that can lead to suicide. By identifying the individuals having suicidal ideation beforehand, the risk of them completing suicide can be reduced. Social media is increasingly becoming a powerful platform where people around the world are sharing emotions and thoughts. Moreover, this platform in some way is working as a catalyst for invoking and inciting the suicidal ideation. The objective of this proposal is to use social media as a tool that can aid in preventing the same. Data is collected from Twitter, a social networking site using some features that are related to suicidal ideation. The tweets are preprocessed as per the semantics of the identified features and then it is converted into probabilistic values so that it will be suitably used by machine learning and ensemble learning algorithms. Different machine learning algorithms like Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Decision Tree, Logistic Regression, Support Vector Machine were applied on the data to predict and identify trends of suicidal ideation. Further the proposed work is evaluated with some ensemble approaches like Random Forest, AdaBoost, Voting Ensemble to see the improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研陈发布了新的文献求助10
1秒前
整齐的书雁完成签到,获得积分10
1秒前
xxx完成签到,获得积分20
1秒前
CipherSage应助稳重的泽洋采纳,获得10
1秒前
烟雨落金城完成签到,获得积分20
1秒前
宋依依发布了新的文献求助10
2秒前
2秒前
3秒前
科研启动发布了新的文献求助100
3秒前
3秒前
酷波er应助zzz采纳,获得10
4秒前
的能用纸发布了新的文献求助10
4秒前
5秒前
7秒前
锅锅发布了新的文献求助10
7秒前
lilianan发布了新的文献求助100
7秒前
wy.he应助mhpvv采纳,获得10
7秒前
健忘雁风完成签到,获得积分10
7秒前
Jasper应助研友_n0kqxL采纳,获得30
8秒前
qiqiqi发布了新的文献求助10
8秒前
洪亮发布了新的文献求助10
8秒前
二十三完成签到,获得积分10
9秒前
顺利萃发布了新的文献求助10
10秒前
10秒前
12秒前
酷波er应助qiqiqi采纳,获得10
13秒前
番茄大王完成签到,获得积分10
14秒前
lipel完成签到,获得积分10
16秒前
Iris发布了新的文献求助10
16秒前
16秒前
刘瑞吉完成签到,获得积分10
16秒前
Lucas应助锅锅采纳,获得10
16秒前
17秒前
17秒前
17秒前
科研通AI2S应助淡如水采纳,获得10
19秒前
20秒前
的能用纸完成签到,获得积分20
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548