Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System

计算机科学 电梯 自动化 可编程逻辑控制器 嵌入式系统 信息物理系统 软件工程 操作系统 工程类 结构工程 机械工程
作者
Michael M. Gichane,Jean Bosco Byiringiro,Andrew Chesang,Peterson Murimi Nyaga,Rogers K. Langat,Hasan Smajić,Consolata W. Kiiru
出处
期刊:Designs [MDPI AG]
卷期号:4 (2): 9-9 被引量:28
标识
DOI:10.3390/designs4020009
摘要

As Digital Twins gain more traction and their adoption in industry increases, there is a need to integrate such technology with machine learning features to enhance functionality and enable decision making tasks. This has lead to the emergence of a concept known as Digital Triplet; an enhancement of Digital Twin technology through the addition of an ’intelligent activity layer’. This is a relatively new technology in Industrie 4.0 and research efforts are geared towards exploring its applicability, development and testing of means for implementation and quick adoption. This paper presents the design and implementation of a Digital Triplet for a three-floor elevator system. It demonstrates the integration of a machine learning (ML) object detection model and the system Digital Twin. This was done to introduce an additional security feature that enabled the system to make a decision, based on objects detected and take preliminary security measures. The virtual model was designed in Siemens NX and programmed via Total Integrated Automation (TIA) portal software. The corresponding physical model was fabricated and controlled using a Programmable Logic Controller (PLC) S7 1200. A control program was developed to mimic the general operations of a typical elevator system used in a commercial building setting. Communication, between the physical and virtual models, was enabled using the OPC-Unified Architecture (OPC-UA) protocol. Object recognition using “You only look once” (YOLOV3) based machine learning algorithm was incorporated. The Digital Triplet’s functionality was tested, ensuring the virtual system duplicated actual operations of the physical counterpart through the use of sensor data. Performance testing was done to determine the impact of the ML module on the real-time functionality aspect of the system. Experiment results showed the object recognition contributed an average of 1.083 s to an overall signal travel time of 1.338 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助丁的采纳,获得10
刚刚
海东南完成签到,获得积分10
刚刚
1秒前
hh完成签到,获得积分10
2秒前
哭泣的猕猴桃完成签到,获得积分10
2秒前
852应助野猪亨利28采纳,获得10
3秒前
kkh发布了新的文献求助10
3秒前
zz完成签到,获得积分10
4秒前
5秒前
111发布了新的文献求助10
5秒前
seven完成签到,获得积分10
6秒前
小马甲应助Dr.Liujun采纳,获得10
6秒前
WWLL完成签到,获得积分20
6秒前
小小六完成签到,获得积分10
6秒前
小郭发布了新的文献求助10
7秒前
WY完成签到,获得积分10
7秒前
Ashley完成签到,获得积分10
7秒前
顾矜应助Lili采纳,获得10
8秒前
NeoWu完成签到,获得积分10
8秒前
8秒前
平常的四娘完成签到,获得积分20
11秒前
12秒前
杏林靴子发布了新的文献求助10
12秒前
LIU完成签到,获得积分10
12秒前
13秒前
吴大振完成签到,获得积分20
13秒前
淡淡的士晋完成签到,获得积分10
13秒前
13秒前
落后的翠柏完成签到 ,获得积分10
15秒前
Zjn-完成签到,获得积分20
15秒前
suexxxc发布了新的文献求助10
15秒前
野猪亨利28完成签到,获得积分10
16秒前
centlay完成签到,获得积分0
16秒前
piano呀发布了新的文献求助10
17秒前
17秒前
17秒前
OVERSEER发布了新的文献求助10
17秒前
18秒前
18秒前
卷心菜完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137211
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785274
捐赠科研通 2444247
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601023