Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System

计算机科学 电梯 自动化 可编程逻辑控制器 嵌入式系统 信息物理系统 软件工程 操作系统 工程类 结构工程 机械工程
作者
Michael M. Gichane,Jean Bosco Byiringiro,Andrew Chesang,Peterson Murimi Nyaga,Rogers K. Langat,Hasan Smajić,Consolata W. Kiiru
出处
期刊:Designs [MDPI AG]
卷期号:4 (2): 9-9 被引量:32
标识
DOI:10.3390/designs4020009
摘要

As Digital Twins gain more traction and their adoption in industry increases, there is a need to integrate such technology with machine learning features to enhance functionality and enable decision making tasks. This has lead to the emergence of a concept known as Digital Triplet; an enhancement of Digital Twin technology through the addition of an ’intelligent activity layer’. This is a relatively new technology in Industrie 4.0 and research efforts are geared towards exploring its applicability, development and testing of means for implementation and quick adoption. This paper presents the design and implementation of a Digital Triplet for a three-floor elevator system. It demonstrates the integration of a machine learning (ML) object detection model and the system Digital Twin. This was done to introduce an additional security feature that enabled the system to make a decision, based on objects detected and take preliminary security measures. The virtual model was designed in Siemens NX and programmed via Total Integrated Automation (TIA) portal software. The corresponding physical model was fabricated and controlled using a Programmable Logic Controller (PLC) S7 1200. A control program was developed to mimic the general operations of a typical elevator system used in a commercial building setting. Communication, between the physical and virtual models, was enabled using the OPC-Unified Architecture (OPC-UA) protocol. Object recognition using “You only look once” (YOLOV3) based machine learning algorithm was incorporated. The Digital Triplet’s functionality was tested, ensuring the virtual system duplicated actual operations of the physical counterpart through the use of sensor data. Performance testing was done to determine the impact of the ML module on the real-time functionality aspect of the system. Experiment results showed the object recognition contributed an average of 1.083 s to an overall signal travel time of 1.338 s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嗷完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
4秒前
Gloria完成签到 ,获得积分10
5秒前
yyy完成签到 ,获得积分10
6秒前
7秒前
碗在水中央完成签到 ,获得积分10
7秒前
争气完成签到 ,获得积分10
9秒前
Xiaoyisheng完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
12秒前
希达通完成签到 ,获得积分10
15秒前
alvis完成签到 ,获得积分10
15秒前
16秒前
哥哥完成签到 ,获得积分10
19秒前
欢呼妙菱完成签到,获得积分10
21秒前
忽晚完成签到 ,获得积分10
21秒前
23秒前
追寻麦片完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
Much完成签到 ,获得积分10
25秒前
典雅问寒应助zongzi12138采纳,获得10
25秒前
活泼草莓完成签到 ,获得积分10
26秒前
纪靖雁完成签到 ,获得积分10
26秒前
掠影完成签到,获得积分10
26秒前
Bake完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
许xu发布了新的文献求助10
29秒前
田1986完成签到,获得积分10
29秒前
忐忑的书桃完成签到 ,获得积分10
30秒前
知了完成签到 ,获得积分10
31秒前
caicai完成签到,获得积分10
31秒前
32秒前
ylyao完成签到,获得积分10
34秒前
小钥匙完成签到 ,获得积分10
34秒前
35秒前
wxx完成签到,获得积分10
35秒前
应见惯完成签到 ,获得积分10
38秒前
chenyunxia完成签到,获得积分10
39秒前
月冷完成签到 ,获得积分10
40秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833