清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System

计算机科学 电梯 自动化 可编程逻辑控制器 嵌入式系统 信息物理系统 软件工程 操作系统 工程类 结构工程 机械工程
作者
Michael M. Gichane,Jean Bosco Byiringiro,Andrew Chesang,Peterson Murimi Nyaga,Rogers K. Langat,Hasan Smajić,Consolata W. Kiiru
出处
期刊:Designs [MDPI AG]
卷期号:4 (2): 9-9 被引量:32
标识
DOI:10.3390/designs4020009
摘要

As Digital Twins gain more traction and their adoption in industry increases, there is a need to integrate such technology with machine learning features to enhance functionality and enable decision making tasks. This has lead to the emergence of a concept known as Digital Triplet; an enhancement of Digital Twin technology through the addition of an ’intelligent activity layer’. This is a relatively new technology in Industrie 4.0 and research efforts are geared towards exploring its applicability, development and testing of means for implementation and quick adoption. This paper presents the design and implementation of a Digital Triplet for a three-floor elevator system. It demonstrates the integration of a machine learning (ML) object detection model and the system Digital Twin. This was done to introduce an additional security feature that enabled the system to make a decision, based on objects detected and take preliminary security measures. The virtual model was designed in Siemens NX and programmed via Total Integrated Automation (TIA) portal software. The corresponding physical model was fabricated and controlled using a Programmable Logic Controller (PLC) S7 1200. A control program was developed to mimic the general operations of a typical elevator system used in a commercial building setting. Communication, between the physical and virtual models, was enabled using the OPC-Unified Architecture (OPC-UA) protocol. Object recognition using “You only look once” (YOLOV3) based machine learning algorithm was incorporated. The Digital Triplet’s functionality was tested, ensuring the virtual system duplicated actual operations of the physical counterpart through the use of sensor data. Performance testing was done to determine the impact of the ML module on the real-time functionality aspect of the system. Experiment results showed the object recognition contributed an average of 1.083 s to an overall signal travel time of 1.338 s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
12秒前
Rioscroni0完成签到,获得积分10
13秒前
17秒前
Thunnus001完成签到 ,获得积分10
26秒前
和谐的夏岚完成签到 ,获得积分10
42秒前
Dong完成签到 ,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
胡萝卜完成签到 ,获得积分10
1分钟前
1分钟前
徐团伟完成签到 ,获得积分10
1分钟前
1分钟前
tcklikai发布了新的文献求助10
1分钟前
自然亦凝完成签到,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
喜悦的唇彩完成签到,获得积分10
2分钟前
望向天空的鱼完成签到 ,获得积分10
3分钟前
iso完成签到,获得积分10
4分钟前
iso发布了新的文献求助10
4分钟前
lyj完成签到 ,获得积分0
4分钟前
扁舟子完成签到,获得积分10
4分钟前
传奇3应助CMUSK采纳,获得10
5分钟前
able完成签到 ,获得积分10
5分钟前
chcmy完成签到 ,获得积分0
5分钟前
朱明完成签到 ,获得积分10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
6分钟前
咯咯咯完成签到 ,获得积分10
6分钟前
LINDENG2004完成签到 ,获得积分10
7分钟前
7分钟前
CMUSK发布了新的文献求助10
7分钟前
熊猫完成签到 ,获得积分10
7分钟前
7分钟前
VDC应助科研通管家采纳,获得30
7分钟前
VDC应助科研通管家采纳,获得30
7分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
无悔完成签到 ,获得积分10
8分钟前
鲤鱼山人完成签到 ,获得积分10
8分钟前
靓丽的豆芽完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509905
求助须知:如何正确求助?哪些是违规求助? 4604626
关于积分的说明 14489941
捐赠科研通 4539592
什么是DOI,文献DOI怎么找? 2487589
邀请新用户注册赠送积分活动 1469910
关于科研通互助平台的介绍 1442257