Model averaging in a multiplicative heteroscedastic model

异方差 估计员 数学 频数推理 计量经济学 选型 统计 均方误差 差异(会计) 乘法函数 贝叶斯推理 经济 贝叶斯概率 会计 数学分析
作者
Shangwei Zhao,Yanyuan Ma,Alan T. K. Wan,Xinyu Zhang,Shouyang Wang
出处
期刊:Econometric Reviews 卷期号:39 (10): 1100-1124 被引量:7
标识
DOI:10.1080/07474938.2020.1770995
摘要

In recent years, the body of literature on frequentist model averaging in econometrics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this article, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimization of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favorable properties compared with some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function mis-specification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two data sets on housing and economic growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
层层泡芙发布了新的文献求助10
3秒前
祝何完成签到,获得积分10
4秒前
yx应助crina采纳,获得30
4秒前
深情安青应助iuhgnor采纳,获得10
4秒前
5秒前
烟花应助liuqinqin采纳,获得10
5秒前
yang完成签到,获得积分10
5秒前
图南完成签到,获得积分10
8秒前
无花果应助Vincent1990采纳,获得10
9秒前
having完成签到,获得积分10
9秒前
10秒前
Jasper应助喜悦的大侠采纳,获得10
11秒前
李月完成签到 ,获得积分10
15秒前
15秒前
18秒前
19秒前
汉堡包应助阔达靖琪采纳,获得10
21秒前
22秒前
危机的鞋子完成签到,获得积分10
22秒前
:9发布了新的文献求助10
22秒前
斯文败类应助小飞采纳,获得10
23秒前
Eatanicecube发布了新的文献求助10
23秒前
24秒前
24秒前
Vincent1990发布了新的文献求助10
24秒前
Orange应助研友_8Kedgn采纳,获得10
27秒前
27秒前
27秒前
28秒前
28秒前
28秒前
30秒前
:9完成签到,获得积分10
30秒前
30秒前
芋头发布了新的文献求助10
32秒前
多多发布了新的文献求助10
32秒前
33秒前
33秒前
Ting完成签到,获得积分10
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234117
求助须知:如何正确求助?哪些是违规求助? 2880509
关于积分的说明 8215804
捐赠科研通 2548076
什么是DOI,文献DOI怎么找? 1377485
科研通“疑难数据库(出版商)”最低求助积分说明 647924
邀请新用户注册赠送积分活动 623263