亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Population specificity affects prediction of appendicular lean tissues for diagnosed sarcopenia: a cross-sectional study

肌萎缩 人体测量学 医学 瘦体质量 横断面研究 人口 数学 统计 内科学 体重 环境卫生
作者
Ana Cláudia Rossini Venturini,Pedro Pugliesi Abdalla,André Pereira dos Santos,Thiago Cândido Alves,Anderson dos Santos Carvalho,Jorge Mota,José Augusto Gonçalves Marini,Franciane Góes Borges,Dalmo Roberto Lopes Machado
出处
期刊:Nutricion Hospitalaria [Arán Ediciones]
被引量:10
标识
DOI:10.20960/nh.02929
摘要

Introduction: the estimation of appendicular lean soft tissue by DXA (ALSTDXA) is one of the criteria for the diagnosis of sarcopenia. However, this method is expensive and not readily avaiable in clinical practice. Anthropometric equations are low-cost and able to accurate predict ALST, but such equations have not been validated for male Brazilian older adults between the ages of 60 to 79 years. To this end, this study sought to validate the existing predictive anthropometric equations for ALST, and to verify its accuracy for the diagnosis of sarcopenia in male Brazilian older adults. Methods: this cross-sectional study recruited and enrolled 25 male older adults (69.3 ± 5.60 years). ALSTDXA and anthropometric measures were determined. ALST estimations with 13 equations were compared to ALSTDXA. The validity of the equations was established when: p > 0.05 (paired t-test); standard error of the estimate (SEE) < 3.5 kg; and coefficient of determination r² > 0.70. Results: two Indian equations met the criteria (Kulkarini 1: 22.19 ± 3.41 kg; p = 0.134; r² = 0.78; EPE = 1.3 kg. Kulkarini 3: 22.14 ± 3.52 kg; p = 0.135; r² = 0.82; SEE = 1.2 kg). However, these equations presented an average bias (Bland-Altman: 0.54 and 0.48 kg) and 'false negative' classification for the ALST index. Thus, three explanatory equations were developed. The most accurate equation demonstrated a high level of agreement (r2adj = 0.87) and validity (r²PRESS = 0.83), a low predictive error (SEEPRESS = 1.53 kg), and an adequate ALST classification. Conclusion: anthropometric models for predicting ALST are valid alternatives for the diagnosis and monitoring of sarcopenia in older adults; however, population specificity affects predictive validity, with risks of false positive/negative misclassification.Introducción: uno de los criterios utilizados para el diagnóstico de la sarcopenia es la determinación de tejido blando magro apendicular por DXA (TBMADXA), método costoso que no siempre está disponible en la práctica clínica. Las ecuaciones antropométricas suponen un bajo coste y predicen bien el TBMA, pero con una validez desconocida para los varones brasileños de 60 a 79 años. Por lo tanto, nuestro objetivo fue validar las ecuaciones antropométricas existentes predictivas del TBMA y verificar su precisión para el diagnóstico de sarcopenia en varones brasileños de edad avanzada. Métodos: participaron en este estudio transversal 25 hombres de edad avanzada (69,3 ± 5,60 años). Se determinaron el TBMADXA y las medidas antropométricas. Las ecuaciones predictivas del TBMA se compararon con el TBMADXA. La validez de las ecuaciones en las comparaciones se confirmó cuando: p > 0,05 (prueba de la “t” pareada); error estándar estimado (EEE) < 3,5 kg; coeficiente de determinación r² > 0,70. Resultados: dos ecuaciones indias cumplieron los criterios (Kulkarini 1: 22,19 ± 3,41 kg; p = 0,134; r² = 0,78; EEE = 1,3 kg. Kulkarini 3: 22,14 ± 3,52 kg; p = 0,135; r² = 0,82; EEE = 1,2 kg). Sin embargo, presentaron sesgo promedio (Bland-Altman: 0,54 y 0,48 kg) y clasificación de 'falso negativo' para el índice de TBMA. Por lo tanto, se crearon tres ecuaciones explicativas. La ecuación más precisa mostró un alto acuerdo (r2adj = 0,87), uma alta validez (r²PRESS = 0,83), um bajo error predictivo (EEEPRESS = 1,53 kg) y uma clasificación del TBMA adecuada. Conclusión: los modelos antropométricos para predecir el TBMA son alternativas válidas para el diagnóstico y el seguimiento de la sarcopenia en los ancianos. Pero la especificidad de la población afecta a su validez predictiva, con riesgos de incorrección por clasificación falsa positiva/negativa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助顺利甜瓜采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
大胆菲音发布了新的文献求助30
2分钟前
科目三应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研蓝月发布了新的文献求助150
4分钟前
5分钟前
科研蓝月完成签到,获得积分10
5分钟前
5分钟前
我亦化身东海去完成签到,获得积分10
5分钟前
打打应助我亦化身东海去采纳,获得10
5分钟前
pursu发布了新的文献求助10
5分钟前
愉快的犀牛完成签到 ,获得积分10
5分钟前
Dengjia完成签到,获得积分20
5分钟前
Weiyu完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
TXZ06完成签到,获得积分10
7分钟前
kuoping完成签到,获得积分0
7分钟前
五五完成签到 ,获得积分10
8分钟前
8分钟前
共享精神应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
顺利甜瓜发布了新的文献求助10
9分钟前
鲤鱼山人完成签到 ,获得积分10
9分钟前
顺利甜瓜完成签到,获得积分10
9分钟前
张来完成签到 ,获得积分10
9分钟前
洒脱完成签到,获得积分10
9分钟前
AA完成签到 ,获得积分10
9分钟前
10分钟前
陈宇发布了新的文献求助10
10分钟前
orixero应助陈宇采纳,获得10
10分钟前
陈宇完成签到,获得积分10
10分钟前
duan完成签到 ,获得积分10
10分钟前
点点完成签到 ,获得积分10
10分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
12分钟前
13分钟前
杜鑫鹏发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357315
求助须知:如何正确求助?哪些是违规求助? 4488736
关于积分的说明 13972488
捐赠科研通 4389979
什么是DOI,文献DOI怎么找? 2411784
邀请新用户注册赠送积分活动 1404374
关于科研通互助平台的介绍 1378621