Population specificity affects prediction of appendicular lean tissues for diagnosed sarcopenia: a cross-sectional study

肌萎缩 人体测量学 医学 瘦体质量 横断面研究 人口 数学 统计 内科学 体重 环境卫生
作者
Ana Cláudia Rossini Venturini,Pedro Pugliesi Abdalla,André Pereira dos Santos,Thiago Cândido Alves,Anderson dos Santos Carvalho,Jorge Mota,José Augusto Gonçalves Marini,Franciane Góes Borges,Dalmo Roberto Lopes Machado
出处
期刊:Nutricion Hospitalaria [Arán Ediciones]
被引量:10
标识
DOI:10.20960/nh.02929
摘要

Introduction: the estimation of appendicular lean soft tissue by DXA (ALSTDXA) is one of the criteria for the diagnosis of sarcopenia. However, this method is expensive and not readily avaiable in clinical practice. Anthropometric equations are low-cost and able to accurate predict ALST, but such equations have not been validated for male Brazilian older adults between the ages of 60 to 79 years. To this end, this study sought to validate the existing predictive anthropometric equations for ALST, and to verify its accuracy for the diagnosis of sarcopenia in male Brazilian older adults. Methods: this cross-sectional study recruited and enrolled 25 male older adults (69.3 ± 5.60 years). ALSTDXA and anthropometric measures were determined. ALST estimations with 13 equations were compared to ALSTDXA. The validity of the equations was established when: p > 0.05 (paired t-test); standard error of the estimate (SEE) < 3.5 kg; and coefficient of determination r² > 0.70. Results: two Indian equations met the criteria (Kulkarini 1: 22.19 ± 3.41 kg; p = 0.134; r² = 0.78; EPE = 1.3 kg. Kulkarini 3: 22.14 ± 3.52 kg; p = 0.135; r² = 0.82; SEE = 1.2 kg). However, these equations presented an average bias (Bland-Altman: 0.54 and 0.48 kg) and 'false negative' classification for the ALST index. Thus, three explanatory equations were developed. The most accurate equation demonstrated a high level of agreement (r2adj = 0.87) and validity (r²PRESS = 0.83), a low predictive error (SEEPRESS = 1.53 kg), and an adequate ALST classification. Conclusion: anthropometric models for predicting ALST are valid alternatives for the diagnosis and monitoring of sarcopenia in older adults; however, population specificity affects predictive validity, with risks of false positive/negative misclassification.Introducción: uno de los criterios utilizados para el diagnóstico de la sarcopenia es la determinación de tejido blando magro apendicular por DXA (TBMADXA), método costoso que no siempre está disponible en la práctica clínica. Las ecuaciones antropométricas suponen un bajo coste y predicen bien el TBMA, pero con una validez desconocida para los varones brasileños de 60 a 79 años. Por lo tanto, nuestro objetivo fue validar las ecuaciones antropométricas existentes predictivas del TBMA y verificar su precisión para el diagnóstico de sarcopenia en varones brasileños de edad avanzada. Métodos: participaron en este estudio transversal 25 hombres de edad avanzada (69,3 ± 5,60 años). Se determinaron el TBMADXA y las medidas antropométricas. Las ecuaciones predictivas del TBMA se compararon con el TBMADXA. La validez de las ecuaciones en las comparaciones se confirmó cuando: p > 0,05 (prueba de la “t” pareada); error estándar estimado (EEE) < 3,5 kg; coeficiente de determinación r² > 0,70. Resultados: dos ecuaciones indias cumplieron los criterios (Kulkarini 1: 22,19 ± 3,41 kg; p = 0,134; r² = 0,78; EEE = 1,3 kg. Kulkarini 3: 22,14 ± 3,52 kg; p = 0,135; r² = 0,82; EEE = 1,2 kg). Sin embargo, presentaron sesgo promedio (Bland-Altman: 0,54 y 0,48 kg) y clasificación de 'falso negativo' para el índice de TBMA. Por lo tanto, se crearon tres ecuaciones explicativas. La ecuación más precisa mostró un alto acuerdo (r2adj = 0,87), uma alta validez (r²PRESS = 0,83), um bajo error predictivo (EEEPRESS = 1,53 kg) y uma clasificación del TBMA adecuada. Conclusión: los modelos antropométricos para predecir el TBMA son alternativas válidas para el diagnóstico y el seguimiento de la sarcopenia en los ancianos. Pero la especificidad de la población afecta a su validez predictiva, con riesgos de incorrección por clasificación falsa positiva/negativa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左眼天堂发布了新的文献求助10
1秒前
4秒前
WC241002292完成签到,获得积分10
4秒前
chi发布了新的文献求助10
4秒前
8秒前
香蕉觅云应助火星上冬亦采纳,获得10
9秒前
Learning发布了新的文献求助10
9秒前
11秒前
12秒前
科研通AI5应助Yuying采纳,获得10
12秒前
可积完成签到,获得积分10
13秒前
yuikiee发布了新的文献求助30
13秒前
FATYE发布了新的文献求助10
15秒前
andy发布了新的文献求助10
16秒前
Sigar完成签到 ,获得积分10
17秒前
科研通AI5应助Learning采纳,获得10
18秒前
dfb完成签到,获得积分10
18秒前
18秒前
梅梅发布了新的文献求助10
19秒前
20秒前
华仔应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
21秒前
tcf应助科研通管家采纳,获得10
21秒前
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
21秒前
钩子89应助科研通管家采纳,获得20
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
烟花应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得20
22秒前
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
稳重书本发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761965
求助须知:如何正确求助?哪些是违规求助? 3305655
关于积分的说明 10135129
捐赠科研通 3019805
什么是DOI,文献DOI怎么找? 1658407
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783