Population specificity affects prediction of appendicular lean tissues for diagnosed sarcopenia: a cross-sectional study

肌萎缩 人体测量学 医学 瘦体质量 横断面研究 人口 数学 统计 内科学 体重 环境卫生
作者
Ana Cláudia Rossini Venturini,Pedro Pugliesi Abdalla,André Pereira dos Santos,Thiago Cândido Alves,Anderson dos Santos Carvalho,Jorge Mota,José Augusto Gonçalves Marini,Franciane Góes Borges,Dalmo Roberto Lopes Machado
出处
期刊:Nutricion Hospitalaria [Arán Ediciones]
被引量:10
标识
DOI:10.20960/nh.02929
摘要

Introduction: the estimation of appendicular lean soft tissue by DXA (ALSTDXA) is one of the criteria for the diagnosis of sarcopenia. However, this method is expensive and not readily avaiable in clinical practice. Anthropometric equations are low-cost and able to accurate predict ALST, but such equations have not been validated for male Brazilian older adults between the ages of 60 to 79 years. To this end, this study sought to validate the existing predictive anthropometric equations for ALST, and to verify its accuracy for the diagnosis of sarcopenia in male Brazilian older adults. Methods: this cross-sectional study recruited and enrolled 25 male older adults (69.3 ± 5.60 years). ALSTDXA and anthropometric measures were determined. ALST estimations with 13 equations were compared to ALSTDXA. The validity of the equations was established when: p > 0.05 (paired t-test); standard error of the estimate (SEE) < 3.5 kg; and coefficient of determination r² > 0.70. Results: two Indian equations met the criteria (Kulkarini 1: 22.19 ± 3.41 kg; p = 0.134; r² = 0.78; EPE = 1.3 kg. Kulkarini 3: 22.14 ± 3.52 kg; p = 0.135; r² = 0.82; SEE = 1.2 kg). However, these equations presented an average bias (Bland-Altman: 0.54 and 0.48 kg) and 'false negative' classification for the ALST index. Thus, three explanatory equations were developed. The most accurate equation demonstrated a high level of agreement (r2adj = 0.87) and validity (r²PRESS = 0.83), a low predictive error (SEEPRESS = 1.53 kg), and an adequate ALST classification. Conclusion: anthropometric models for predicting ALST are valid alternatives for the diagnosis and monitoring of sarcopenia in older adults; however, population specificity affects predictive validity, with risks of false positive/negative misclassification.Introducción: uno de los criterios utilizados para el diagnóstico de la sarcopenia es la determinación de tejido blando magro apendicular por DXA (TBMADXA), método costoso que no siempre está disponible en la práctica clínica. Las ecuaciones antropométricas suponen un bajo coste y predicen bien el TBMA, pero con una validez desconocida para los varones brasileños de 60 a 79 años. Por lo tanto, nuestro objetivo fue validar las ecuaciones antropométricas existentes predictivas del TBMA y verificar su precisión para el diagnóstico de sarcopenia en varones brasileños de edad avanzada. Métodos: participaron en este estudio transversal 25 hombres de edad avanzada (69,3 ± 5,60 años). Se determinaron el TBMADXA y las medidas antropométricas. Las ecuaciones predictivas del TBMA se compararon con el TBMADXA. La validez de las ecuaciones en las comparaciones se confirmó cuando: p > 0,05 (prueba de la “t” pareada); error estándar estimado (EEE) < 3,5 kg; coeficiente de determinación r² > 0,70. Resultados: dos ecuaciones indias cumplieron los criterios (Kulkarini 1: 22,19 ± 3,41 kg; p = 0,134; r² = 0,78; EEE = 1,3 kg. Kulkarini 3: 22,14 ± 3,52 kg; p = 0,135; r² = 0,82; EEE = 1,2 kg). Sin embargo, presentaron sesgo promedio (Bland-Altman: 0,54 y 0,48 kg) y clasificación de 'falso negativo' para el índice de TBMA. Por lo tanto, se crearon tres ecuaciones explicativas. La ecuación más precisa mostró un alto acuerdo (r2adj = 0,87), uma alta validez (r²PRESS = 0,83), um bajo error predictivo (EEEPRESS = 1,53 kg) y uma clasificación del TBMA adecuada. Conclusión: los modelos antropométricos para predecir el TBMA son alternativas válidas para el diagnóstico y el seguimiento de la sarcopenia en los ancianos. Pero la especificidad de la población afecta a su validez predictiva, con riesgos de incorrección por clasificación falsa positiva/negativa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
accept完成签到,获得积分10
2秒前
2秒前
Charlie发布了新的文献求助10
2秒前
2秒前
整齐泥猴桃完成签到,获得积分10
2秒前
2秒前
刘天宇完成签到 ,获得积分10
3秒前
灰太狼完成签到,获得积分10
3秒前
4秒前
4秒前
liu完成签到,获得积分20
5秒前
灰灰应助小怪兽采纳,获得10
6秒前
科研通AI2S应助小小莫采纳,获得10
6秒前
废寝忘食完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
李爱国应助李沐唅采纳,获得10
8秒前
打打应助渤123采纳,获得30
9秒前
噜啦噜啦发布了新的文献求助10
9秒前
脑洞疼应助灰太狼采纳,获得30
9秒前
彻底的完成签到,获得积分20
9秒前
10秒前
锤子欧尼完成签到,获得积分10
10秒前
10秒前
11秒前
Lucas应助朱吕江采纳,获得10
12秒前
苏媛媛发布了新的文献求助20
12秒前
lin发布了新的文献求助10
12秒前
YuchaoJia发布了新的文献求助10
12秒前
犇骉发布了新的文献求助10
12秒前
FashionBoy应助真实的亦竹采纳,获得30
13秒前
wanci应助派大星采纳,获得10
13秒前
依灵完成签到,获得积分10
13秒前
白辞完成签到,获得积分10
13秒前
王二萌发布了新的文献求助10
13秒前
14秒前
15秒前
猪猪hero应助小不遛w采纳,获得10
16秒前
在水一方应助噜啦噜啦采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957880
求助须知:如何正确求助?哪些是违规求助? 3504018
关于积分的说明 11116696
捐赠科研通 3235352
什么是DOI,文献DOI怎么找? 1788202
邀请新用户注册赠送积分活动 871112
科研通“疑难数据库(出版商)”最低求助积分说明 802473