Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm

心律失常 计算机科学 人工智能 机器学习 算法 内科学 医学 心房颤动
作者
Samir S. Yadav,Shivajirao M. Jadhav
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:163: 113807-113807 被引量:42
标识
DOI:10.1016/j.eswa.2020.113807
摘要

This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient’s reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何浏亮完成签到,获得积分10
1秒前
阿成完成签到,获得积分10
1秒前
Pauline完成签到 ,获得积分10
1秒前
2秒前
微笑的语芙完成签到,获得积分10
2秒前
2秒前
小背包完成签到 ,获得积分10
2秒前
水寒发布了新的文献求助10
4秒前
希望天下0贩的0应助17采纳,获得10
4秒前
yu完成签到 ,获得积分10
4秒前
钟瑞乾完成签到,获得积分10
4秒前
花痴的电灯泡完成签到,获得积分10
5秒前
虚心念桃完成签到,获得积分10
6秒前
jiaolulu发布了新的文献求助10
7秒前
zyw完成签到 ,获得积分10
7秒前
ironsilica完成签到,获得积分10
10秒前
11秒前
被动科研完成签到,获得积分10
13秒前
斗牛的番茄完成签到 ,获得积分10
14秒前
所所应助时尚俊驰采纳,获得10
14秒前
zgt01发布了新的文献求助10
18秒前
背后如彤完成签到 ,获得积分10
20秒前
21秒前
通通通完成签到,获得积分10
22秒前
李治海完成签到,获得积分10
22秒前
诸葛烤鸭完成签到,获得积分10
22秒前
君君完成签到 ,获得积分10
23秒前
long0809完成签到,获得积分10
23秒前
勤劳寒烟完成签到,获得积分10
25秒前
明亮凡梦发布了新的文献求助10
26秒前
fat完成签到,获得积分10
27秒前
27秒前
27秒前
ocean完成签到,获得积分10
28秒前
Jasper应助jiaolulu采纳,获得10
29秒前
29秒前
亚亚完成签到 ,获得积分10
30秒前
13击完成签到,获得积分10
31秒前
Lucario发布了新的文献求助10
32秒前
小龙虾完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022