清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm

心律失常 计算机科学 人工智能 机器学习 算法 内科学 医学 心房颤动
作者
Samir S. Yadav,Shivajirao M. Jadhav
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:163: 113807-113807 被引量:42
标识
DOI:10.1016/j.eswa.2020.113807
摘要

This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient’s reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
11秒前
芙瑞完成签到 ,获得积分10
27秒前
40秒前
lutos发布了新的文献求助10
45秒前
51秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
平常以云完成签到 ,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
bogula1112完成签到 ,获得积分10
2分钟前
lilyzhang2023完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
drhwang完成签到,获得积分10
3分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
单薄水星发布了新的文献求助10
4分钟前
4分钟前
lutos发布了新的文献求助10
4分钟前
hoy完成签到 ,获得积分10
4分钟前
科研通AI2S应助ceeray23采纳,获得20
4分钟前
林楚棋完成签到 ,获得积分10
4分钟前
务实的初蝶完成签到 ,获得积分10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
5分钟前
Yuki完成签到 ,获得积分10
5分钟前
小珂完成签到,获得积分10
5分钟前
清秀LL完成签到 ,获得积分10
5分钟前
山东大煎饼完成签到,获得积分10
6分钟前
lllyjs完成签到 ,获得积分10
6分钟前
wuqi完成签到 ,获得积分10
7分钟前
大医仁心完成签到 ,获得积分10
7分钟前
7分钟前
小小虾完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685602
关于积分的说明 14838712
捐赠科研通 4672541
什么是DOI,文献DOI怎么找? 2538338
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965