Blockchain Empowered Asynchronous Federated Learning for Secure Data Sharing in Internet of Vehicles

计算机科学 异步通信 数据共享 强化学习 块链 计算机网络 互联网 分布式计算 可靠性(半导体) 节点(物理) 信息隐私 计算机安全 人工智能 工程类 万维网 物理 病理 医学 功率(物理) 替代医学 结构工程 量子力学
作者
Yunlong Lu,Xiaohong Huang,Ke Zhang,Sabita Maharjan,Yan Zhang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 4298-4311 被引量:545
标识
DOI:10.1109/tvt.2020.2973651
摘要

In Internet of Vehicles (IoV), data sharing among vehicles for collaborative analysis can improve the driving experience and service quality. However, the bandwidth, security and privacy issues hinder data providers from participating in the data sharing process. In addition, due to the intermittent and unreliable communications in IoV, the reliability and efficiency of data sharing need to be further enhanced. In this paper, we propose a new architecture based on federated learning to relieve transmission load and address privacy concerns of providers. To enhance the security and reliability of model parameters, we develop a hybrid blockchain architecture which consists of the permissioned blockchain and the local Directed Acyclic Graph (DAG). Moreover, we propose an asynchronous federated learning scheme by adopting Deep Reinforcement Learning (DRL) for node selection to improve the efficiency. The reliability of shared data is also guaranteed by integrating learned models into blockchain and executing a two-stage verification. Numerical results show that the proposed data sharing scheme provides both higher learning accuracy and faster convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
领导范儿应助越幸运采纳,获得10
3秒前
张瀚文完成签到,获得积分10
4秒前
Hello应助xiehexin采纳,获得20
4秒前
lin发布了新的文献求助10
5秒前
道友且慢完成签到,获得积分10
5秒前
6秒前
lily完成签到,获得积分10
6秒前
Hello应助朱瑶君采纳,获得10
6秒前
冷傲山彤发布了新的文献求助10
7秒前
9秒前
田様应助简简单单采纳,获得10
9秒前
lily发布了新的文献求助10
11秒前
瑾瑾完成签到,获得积分10
12秒前
Friday发布了新的文献求助10
12秒前
iFaceDOG关注了科研通微信公众号
13秒前
独特的友琴完成签到 ,获得积分10
14秒前
15秒前
小研发布了新的文献求助10
16秒前
小马完成签到,获得积分10
16秒前
羞涩的念寒完成签到,获得积分20
17秒前
17秒前
爆米花应助xiehexin采纳,获得10
17秒前
冷傲芷雪完成签到 ,获得积分10
18秒前
20秒前
jackwang完成签到,获得积分10
21秒前
贺豪完成签到 ,获得积分10
22秒前
皇额娘她推了熹娘娘完成签到 ,获得积分10
22秒前
脑洞疼应助小研采纳,获得10
22秒前
朱瑶君发布了新的文献求助10
22秒前
ferrycake应助阿伦艾弗森采纳,获得20
23秒前
吴昊发布了新的文献求助10
23秒前
23秒前
orixero应助Bilipear采纳,获得10
24秒前
25秒前
xiongqi发布了新的文献求助10
25秒前
朱瑶君完成签到,获得积分10
26秒前
27秒前
Akim应助寂寞的黑夜采纳,获得10
27秒前
不玩手机完成签到,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283