CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes

蛋白质亚单位 计算生物学 细胞 细胞生物学 配体(生物化学) 受体 表达式(计算机科学) 生物 化学 遗传学 计算机科学 基因 程序设计语言
作者
Mirjana Efremova,Miquel Vento-Tormo,Sarah A. Teichmann,Roser Vento‐Tormo
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (4): 1484-1506 被引量:2408
标识
DOI:10.1038/s41596-020-0292-x
摘要

Cell–cell communication mediated by ligand–receptor complexes is critical to coordinating diverse biological processes, such as development, differentiation and inflammation. To investigate how the context-dependent crosstalk of different cell types enables physiological processes to proceed, we developed CellPhoneDB, a novel repository of ligands, receptors and their interactions. In contrast to other repositories, our database takes into account the subunit architecture of both ligands and receptors, representing heteromeric complexes accurately. We integrated our resource with a statistical framework that predicts enriched cellular interactions between two cell types from single-cell transcriptomics data. Here, we outline the structure and content of our repository, provide procedures for inferring cell–cell communication networks from single-cell RNA sequencing data and present a practical step-by-step guide to help implement the protocol. CellPhoneDB v.2.0 is an updated version of our resource that incorporates additional functionalities to enable users to introduce new interacting molecules and reduces the time and resources needed to interrogate large datasets. CellPhoneDB v.2.0 is publicly available, both as code and as a user-friendly web interface; it can be used by both experts and researchers with little experience in computational genomics. In our protocol, we demonstrate how to evaluate meaningful biological interactions with CellPhoneDB v.2.0 using published datasets. This protocol typically takes ~2 h to complete, from installation to statistical analysis and visualization, for a dataset of ~10 GB, 10,000 cells and 19 cell types, and using five threads. CellPhoneDB combines an interactive database and a statistical framework for the exploration of ligand–receptor interactions inferred from single-cell transcriptomics measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyj发布了新的文献求助10
刚刚
请和我吃饭完成签到,获得积分10
1秒前
北城发布了新的文献求助10
2秒前
勤恳冰淇淋完成签到 ,获得积分10
3秒前
5秒前
5秒前
清晏完成签到,获得积分10
6秒前
曲书文完成签到,获得积分10
7秒前
李瑞瑞发布了新的文献求助10
7秒前
5123完成签到,获得积分10
7秒前
勤劳落雁发布了新的文献求助10
7秒前
7秒前
10秒前
xuxu完成签到 ,获得积分10
10秒前
11秒前
毛毛虫发布了新的文献求助10
11秒前
科研通AI5应助朴斓采纳,获得10
12秒前
陈彦冰完成签到,获得积分10
12秒前
tianny完成签到,获得积分10
13秒前
浪迹天涯发布了新的文献求助10
14秒前
星星发布了新的文献求助10
14秒前
李瑞瑞完成签到,获得积分10
15秒前
15秒前
17秒前
星辰大海应助jy采纳,获得10
17秒前
18秒前
我是站长才怪应助Khr1stINK采纳,获得10
18秒前
19秒前
xh完成签到,获得积分10
20秒前
para_团结完成签到,获得积分10
21秒前
怡然剑成发布了新的文献求助10
21秒前
22秒前
22秒前
ipeakkka发布了新的文献求助10
22秒前
George完成签到,获得积分10
24秒前
WDK完成签到,获得积分10
24秒前
情怀应助敏感的芷采纳,获得10
24秒前
Orange应助方勇飞采纳,获得10
25秒前
FashionBoy应助烂漫驳采纳,获得10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824