材料科学
聚合物
桥接(联网)
活动层
聚合物太阳能电池
结晶度
弯曲半径
激子
光电子学
能量转换效率
延伸率
带隙
化学物理
化学工程
纳米技术
复合材料
化学
弯曲
图层(电子)
极限抗拉强度
凝聚态物理
工程类
物理
薄膜晶体管
计算机科学
计算机网络
作者
Qunping Fan,Wenyan Su,Shanshan Chen,Wansun Kim,Xiaobin Chen,Byongkyu Lee,Tao Liu,Ulises A. Méndez‐Romero,Ruijie Ma,Tao Yang,Wenliu Zhuang,Yu Li,Yaowen Li,Taek‐Soo Kim,Lintao Hou,Changduk Yang,He Yan,Donghong Yu,Ergang Wang
出处
期刊:Joule
[Elsevier]
日期:2020-02-17
卷期号:4 (3): 658-672
被引量:304
标识
DOI:10.1016/j.joule.2020.01.014
摘要
We developed three narrow band-gap polymer acceptors PF2-DTC, PF2-DTSi, and PF2-DTGe with different bridging atoms (i.e., C, Si, and Ge). Studies found that such different bridging atoms significantly affect the crystallinity, extinction coefficient, electron mobility of the polymer acceptors, and the morphology and mechanical robustness of related active layers. In all-polymer solar cells (all-PSCs), these polymer acceptors achieved high power conversion efficiencies (PCEs) over 8.0%, while PF2-DTSi obtained the highest PCE of 10.77% due to its improved exciton dissociation, charge transport, and optimized morphology. Moreover, the PF2-DTSi-based active layer showed excellent mechanical robustness with a high toughness value of 9.3 MJ m−3 and a large elongation at a break of 8.6%, which is a great advantage for the practical applications of flexible devices. As a result, the PF2-DTSi-based flexible all-PSC retained >90% of its initial PCE (6.37%) after bending and relaxing 1,200 times at a bending radius of ∼4 mm.
科研通智能强力驱动
Strongly Powered by AbleSci AI