Deep Cooperative Enhancement Hashing Network for Low-Resolution Image Retrieval

计算机科学 散列函数 人工智能 图像检索 模式识别(心理学) 计算机视觉 图像(数学) 数据挖掘 计算机安全
作者
Feng Dai,Lei Wang,Xiaobin Zhu,Haisheng Li,Qiang Cai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 120114-120123
标识
DOI:10.1109/access.2020.3006060
摘要

In recent years, deep learning of hash codes for fast image retrieval have achieved excellent performance. Although the off-the-shelf methods achieve promising performance on images of good quality, their performances may degrade greatly on image of low-quality and low-resolution. In this paper, we propose a novel end-to-end deep cooperative enhancement hashing network (DCEN) for low-resolution image retrieval. It aims to promote semantic information of low-resolution images with super-resolution techniques, so as to achieve similar semantic features as high-resolution images. The proposed framework mainly consists of two main components: an image semantic enhancement network and an image hashing network. Specifically, the semantic enhancement network is proposed to generate super-resolved images from low-resolution images, which improves hashing performance of low-resolution images. And the hashing network is presented to not only assist the training of semantic enhancement network, but also to represent images as hash codes. Finally, we adopt an alternative training method for these two networks to greatly reduce their coupling degree, so that the hashing network can still maintain promising performance on high-resolution images. In addition, we propose a bridging strategy to add more semantic information for the super-resolution image. Extensive experiments show that our method achieve state-of-the-art performance on low-resolution images retrieval and still maintains the excellent hashing representation ability for high-resolution images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
云瑾发布了新的文献求助10
2秒前
大模型应助lxx采纳,获得10
3秒前
爆米花应助热心盼晴采纳,获得10
4秒前
4秒前
5秒前
5秒前
lulul发布了新的文献求助10
6秒前
7秒前
aaaaa小柴完成签到,获得积分10
7秒前
mughal发布了新的文献求助10
8秒前
www完成签到,获得积分10
9秒前
大模型应助开心的西瓜采纳,获得10
9秒前
等待寻绿完成签到,获得积分10
10秒前
11秒前
Demo发布了新的文献求助30
11秒前
SciGPT应助Xingkun_li采纳,获得10
11秒前
xiaobai发布了新的文献求助10
12秒前
长隆完成签到,获得积分0
13秒前
江j完成签到,获得积分10
13秒前
科研通AI2S应助饱满的书萱采纳,获得30
14秒前
15秒前
三三完成签到,获得积分10
15秒前
16秒前
16秒前
泡沫发布了新的文献求助20
17秒前
17秒前
18秒前
隐形曼青应助Demo采纳,获得30
20秒前
21秒前
21秒前
21秒前
李玉琼发布了新的文献求助10
22秒前
吴创辉关注了科研通微信公众号
23秒前
3299完成签到,获得积分10
23秒前
葱油面完成签到,获得积分10
24秒前
26秒前
温暖的涵易应助宋一采纳,获得30
26秒前
26秒前
打打应助xiaixax采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765692
求助须知:如何正确求助?哪些是违规求助? 3310244
关于积分的说明 10154044
捐赠科研通 3025594
什么是DOI,文献DOI怎么找? 1660541
邀请新用户注册赠送积分活动 793476
科研通“疑难数据库(出版商)”最低求助积分说明 755616