兴趣点检测
计算机科学
人工智能
尺度不变特征变换
Boosting(机器学习)
兴趣点
计算机视觉
单应性
卷积神经网络
探测器
像素
点(几何)
Lift(数据挖掘)
模式识别(心理学)
感兴趣区域
图像(数学)
机器学习
图像处理
数学
特征检测(计算机视觉)
几何学
投射试验
统计
电信
射影空间
作者
Daniel DeTone,Tomasz Malisiewicz,Andrew Rabinovich
出处
期刊:Computer Vision and Pattern Recognition
日期:2018-06-01
被引量:1699
标识
DOI:10.1109/cvprw.2018.00060
摘要
This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches when compared to LIFT, SIFT and ORB.
科研通智能强力驱动
Strongly Powered by AbleSci AI