PPINN: Parareal physics-informed neural network for time-dependent PDEs

解算器 人工神经网络 计算机科学 加速 物理定律 集合(抽象数据类型) 守恒定律 算法 数学优化 人工智能 数学 物理 并行计算 量子力学 数学分析 程序设计语言
作者
Xuhui Meng,Zhen Li,Dongkun Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:370: 113250-113250 被引量:377
标识
DOI:10.1016/j.cma.2020.113250
摘要

Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree. While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time-space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speedup for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion-reaction equation. Our results demonstrate that PPINNs converge in a couple of iterations with significant speed-ups proportional to the number of time-subdomains employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfu完成签到,获得积分10
刚刚
ding应助Dddd采纳,获得10
1秒前
yin发布了新的文献求助10
1秒前
大模型应助张张采纳,获得10
1秒前
Akim应助吾问无为谓采纳,获得10
2秒前
2秒前
神勇的冰姬完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
tony完成签到,获得积分10
5秒前
Uynaux发布了新的文献求助30
5秒前
SONG完成签到,获得积分10
5秒前
SYLH应助干秋白采纳,获得10
6秒前
6秒前
风雨1210发布了新的文献求助10
7秒前
文艺书雪完成签到 ,获得积分10
7秒前
独行侠完成签到,获得积分10
7秒前
8秒前
我测你码发布了新的文献求助10
8秒前
又要起名字完成签到,获得积分10
8秒前
8秒前
8秒前
damian完成签到,获得积分10
9秒前
LiShin发布了新的文献求助10
9秒前
渝州人应助凤凰山采纳,获得10
10秒前
sweetbearm应助凤凰山采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
yizhiGao应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
顾矜应助随机起的名采纳,获得10
10秒前
NN应助科研通管家采纳,获得10
10秒前
pinging应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
yizhiGao应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794