清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PPINN: Parareal physics-informed neural network for time-dependent PDEs

人工神经网络 计算机科学 应用数学 统计物理学 数学物理 人工智能 经典力学 数学 物理
作者
Xuhui Meng,Zhen Li,Dongkun Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:370: 113250-113250 被引量:525
标识
DOI:10.1016/j.cma.2020.113250
摘要

Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree. While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time-space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speedup for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion-reaction equation. Our results demonstrate that PPINNs converge in a couple of iterations with significant speed-ups proportional to the number of time-subdomains employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默赛君完成签到 ,获得积分10
7秒前
雪山飞龙完成签到,获得积分10
17秒前
雪山飞龙发布了新的文献求助10
23秒前
蛋白积聚完成签到,获得积分10
27秒前
颜林林完成签到,获得积分10
29秒前
徐团伟完成签到 ,获得积分10
34秒前
喜悦的唇彩完成签到,获得积分10
36秒前
万金油完成签到 ,获得积分10
40秒前
RED发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
43秒前
nine2652完成签到 ,获得积分10
46秒前
冷静的尔竹完成签到,获得积分10
47秒前
creep2020完成签到,获得积分10
54秒前
muriel完成签到,获得积分0
54秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
nanfang完成签到 ,获得积分10
1分钟前
1分钟前
一盏壶完成签到,获得积分10
1分钟前
Fairy完成签到,获得积分10
1分钟前
poki完成签到 ,获得积分10
1分钟前
山是山三十三完成签到 ,获得积分10
1分钟前
1分钟前
在水一方完成签到,获得积分0
2分钟前
可夫司机完成签到 ,获得积分10
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
2分钟前
明理从露完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
3分钟前
1437594843完成签到 ,获得积分10
3分钟前
三水完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
pegasus0802完成签到,获得积分10
4分钟前
RED发布了新的文献求助10
4分钟前
4分钟前
小怪完成签到,获得积分10
4分钟前
4分钟前
4分钟前
lx完成签到,获得积分10
4分钟前
GMEd1son完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664590
求助须知:如何正确求助?哪些是违规求助? 4865694
关于积分的说明 15108114
捐赠科研通 4823215
什么是DOI,文献DOI怎么找? 2582091
邀请新用户注册赠送积分活动 1536184
关于科研通互助平台的介绍 1494567