PPINN: Parareal physics-informed neural network for time-dependent PDEs

解算器 人工神经网络 计算机科学 加速 物理定律 集合(抽象数据类型) 守恒定律 算法 数学优化 人工智能 数学 物理 并行计算 量子力学 数学分析 程序设计语言
作者
Xuhui Meng,Zhen Li,Dongkun Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:370: 113250-113250 被引量:377
标识
DOI:10.1016/j.cma.2020.113250
摘要

Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree. While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time-space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speedup for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion-reaction equation. Our results demonstrate that PPINNs converge in a couple of iterations with significant speed-ups proportional to the number of time-subdomains employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的诗兰完成签到,获得积分10
3秒前
陶某完成签到 ,获得积分10
4秒前
如忆婧年完成签到,获得积分10
4秒前
詹四娘发布了新的文献求助10
5秒前
8秒前
儒雅的如松完成签到 ,获得积分10
9秒前
11秒前
上官若男应助马海鑫采纳,获得10
11秒前
斯文败类应助cangye采纳,获得10
13秒前
14秒前
一切随风完成签到,获得积分10
14秒前
15秒前
夜已深完成签到,获得积分10
16秒前
rgaerva发布了新的文献求助10
18秒前
flystone发布了新的文献求助10
21秒前
22秒前
23秒前
菲菲公主完成签到,获得积分10
24秒前
淡然红牛完成签到,获得积分10
25秒前
27秒前
SciGPT应助啤酒白菜采纳,获得10
27秒前
28秒前
万能图书馆应助山水木采纳,获得10
28秒前
yu完成签到,获得积分10
28秒前
Jasper应助冯冯采纳,获得10
30秒前
糖糖糖唐发布了新的文献求助10
30秒前
32秒前
32秒前
打工肥仔发布了新的文献求助30
35秒前
36秒前
37秒前
一口饺子完成签到,获得积分10
38秒前
38秒前
安静含卉发布了新的文献求助10
38秒前
搜集达人应助Foremelon采纳,获得10
38秒前
影默完成签到,获得积分10
39秒前
iu完成签到,获得积分10
39秒前
40秒前
41秒前
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795257
关于积分的说明 7813954
捐赠科研通 2451248
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413