PPINN: Parareal physics-informed neural network for time-dependent PDEs

解算器 人工神经网络 计算机科学 加速 物理定律 集合(抽象数据类型) 守恒定律 算法 数学优化 人工智能 数学 物理 并行计算 量子力学 数学分析 程序设计语言
作者
Xuhui Meng,Zhen Li,Dongkun Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:370: 113250-113250 被引量:377
标识
DOI:10.1016/j.cma.2020.113250
摘要

Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree. While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time-space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speedup for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion-reaction equation. Our results demonstrate that PPINNs converge in a couple of iterations with significant speed-ups proportional to the number of time-subdomains employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
benben应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
benben应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
yanyimeng发布了新的文献求助20
5秒前
ahshdh完成签到,获得积分10
6秒前
Zyhaou完成签到,获得积分10
7秒前
卡皮巴拉发布了新的文献求助10
8秒前
9秒前
nini发布了新的文献求助10
9秒前
10秒前
10秒前
徐志豪发布了新的文献求助10
10秒前
10秒前
12秒前
linmo发布了新的文献求助10
15秒前
高铭泽发布了新的文献求助10
15秒前
gyl发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
情怀应助zzz_yue采纳,获得10
19秒前
19秒前
冷傲菠萝发布了新的文献求助10
19秒前
xiachengcs发布了新的文献求助30
20秒前
20秒前
徐志豪完成签到,获得积分10
21秒前
22秒前
世界需要我完成签到,获得积分10
23秒前
swat发布了新的文献求助10
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578