清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PPINN: Parareal physics-informed neural network for time-dependent PDEs

人工神经网络 计算机科学 应用数学 统计物理学 数学物理 人工智能 经典力学 数学 物理
作者
Xuhui Meng,Zhen Li,Dongkun Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:370: 113250-113250 被引量:464
标识
DOI:10.1016/j.cma.2020.113250
摘要

Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree. While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time-space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speedup for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion-reaction equation. Our results demonstrate that PPINNs converge in a couple of iterations with significant speed-ups proportional to the number of time-subdomains employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景XN完成签到 ,获得积分10
16秒前
蝎子莱莱xth完成签到,获得积分10
43秒前
赵jl完成签到 ,获得积分10
48秒前
氢锂钠钾铷铯钫完成签到,获得积分10
50秒前
Square完成签到,获得积分10
55秒前
GPTea应助科研通管家采纳,获得20
1分钟前
GPTea应助科研通管家采纳,获得20
1分钟前
1分钟前
helloworld完成签到,获得积分20
1分钟前
helloworld发布了新的文献求助10
1分钟前
GPTea应助科研通管家采纳,获得20
3分钟前
GPTea应助科研通管家采纳,获得20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
towanda完成签到,获得积分10
4分钟前
沈惠映完成签到 ,获得积分10
4分钟前
Akim应助小惹不好鸡采纳,获得10
4分钟前
闪闪映易完成签到,获得积分10
4分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得20
5分钟前
GPTea应助科研通管家采纳,获得20
5分钟前
月军完成签到,获得积分10
6分钟前
芹123完成签到,获得积分10
6分钟前
松松完成签到 ,获得积分10
6分钟前
GPTea应助科研通管家采纳,获得20
7分钟前
zheng完成签到 ,获得积分10
7分钟前
哈哈完成签到 ,获得积分10
7分钟前
方白秋完成签到,获得积分0
7分钟前
CC完成签到,获得积分10
7分钟前
可爱沛蓝完成签到 ,获得积分10
7分钟前
GPTea应助科研通管家采纳,获得10
9分钟前
zxq完成签到 ,获得积分10
9分钟前
nav完成签到 ,获得积分10
9分钟前
9分钟前
Drli发布了新的文献求助10
9分钟前
9分钟前
9分钟前
传奇3应助Drli采纳,获得10
9分钟前
小惹不好鸡关注了科研通微信公众号
9分钟前
10分钟前
HYQ完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111142
捐赠科研通 3997013
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740