Abstract IA18: Interrogating anti-PD1 immunotherapy resistance mechanisms

免疫疗法 医学 免疫学 癌症研究
作者
Ravindra Uppaluri
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/1557-3265.aacrahns19-ia18
摘要

Background: The response rate of 15-20% with anti-PD1 targeting in head and neck squamous cell carcinoma (HNSCC) highlights the need for strategies to overcome resistance. We have focused on delineating mechanistic aspects of immune checkpoint response and resistance using novel clinical trial approaches coupled with analyses in high-fidelity immunocompetent murine oral carcinoma (MOC) model to study HNSCC immunobiology. Methods: Using the MOC HNSCC model, we generated anti-PD1 resistant models. Whole-exome sequencing and RNA-Seq were used to compare mutational burden and expression signatures. Time of flight mass cytometry (CyTOF) was used to analyze tumor microenvironment (TME) remodeling in response to checkpoint inhibition. 2-D coculture system was used to assess tumor recognition by MHC class I restricted cytotoxic T cells. Tumor cells were loaded with SIINFEKL peptide and OT1 T cells were used as effectors in T-cell cytotoxicity assays. The anti-PD1 resistant MOC model overexpressing CAS9 with high editing efficiency was generated for a genome-scale CRISPR screen. The Broad Institute Genomic Perturbation Platform Brie lentiviral library, including 78,637 gRNAs targeting 19,674 with 1000 controls, was transduced into this line to define modifiers of CD8+ T cell mediated killing. Ezh2 inhibitors and knockout lines were used in characterizing the role of EZH2 in antigen presentation and antitumor immunity. Results: To examine immunotherapy resistance we generated 2 independent anti-PD1 adaptive resistant cell line models, MOC1-esc1 and MOC1-esc2, from their isogenic MOC1 parental line. RNA-Seq showed that MOC1-esc1 upregulated Myc and E2F targets and lost inflammatory signatures whereas -esc2 tumors have upregulated DNA damage and unfolded protein response. When MOC1-esc tumors were retransplanted into naive mice, they exhibited resistance to anti-PD1, while remaining responsive to anti-CTLA4 treatment. To gain comprehensive insights into the tumor microenvironment (TME) as a contributor to adaptive resistance, we analyzed tumor-infiltrating lymphocytes (TIL) in naive MOC1 and MOC1-esc1 tumors using CyTOF with a panel of 38 markers. MOC1-esc1 tumors were highly infiltrated with regulatory T cells (Tregs) and M2-like tumor-associated macrophages (TAMs), while MOC1 tumors have more M1-like TAMs and neutrophils. Furthermore, we observed that both anti-PD1 and anti-CTLA4 treatment dramatically expanded CD8+ T cells and decreased neutrophils in MOC1-esc1 tumors. In responding MOC1-esc1 tumors, anti-CTLA4 treatment resulted in Treg depletion, decreased M2-like TAMs and neutrophils, as well as a striking increase in M1-like TAMs compared with isotype control treated tumors. In contrast, anti-PD1 treated MOC1-esc1 tumors showed decreased M1-like TAMs, while M2-like TAMs were increased compared with control. Depletion of Tregs, neutrophils, or repolarization of TAM using monoclonal antibodies confirmed their contribution in immunotherapy resistance. As the MOC1-esc1 line showed in vitro resistance to T-cell cytotoxicity compared to MOC1 and to define tumor cell intrinsic modulators of T-cell cytotoxicity, we then completed a genome-scale CRISPR screen in MOC1-esc1. This screen identified 355 candidate genes whose loss of function regulated T-cell cytotoxicity. Chromatin modifiers emerged as a major class of genes regulating T-cell recognition of tumor cells. We validated Ezh2 as a therapeutic target and showed that inhibition of this pathway enhanced Class I expression and sensitized MOC1-esc1 cells to T-cell killing in vitro. Analysis of human HNSCC cell line models and TCGA data revealed conservation of Ezh2 impact on Class I expression. Combination therapy with Ezh2 inhibitors and anti-PD1 blockade resulted in enhanced therapeutic efficacy compared to either agent alone in the anti-PD1 resistant MOC1-esc1 model. Conclusions: In summary, this study identified (1) immune modulators within TME involved in adaptive immunotherapy resistance of HNSCC and remodeling with checkpoint therapy and (2) tumor cell intrinsic candidate pathways regulating T-cell recognition. Findings from these studies will advance our understanding of HNSCC immunotherapy resistance and will accelerate the discovery of new combination therapeutic targets and biomarkers in adaptive resistance. Citation Format: Ravindra Uppaluri. Interrogating anti-PD1 immunotherapy resistance mechanisms [abstract]. In: Proceedings of the AACR-AHNS Head and Neck Cancer Conference: Optimizing Survival and Quality of Life through Basic, Clinical, and Translational Research; 2019 Apr 29-30; Austin, TX. Philadelphia (PA): AACR; Clin Cancer Res 2020;26(12_Suppl_2):Abstract nr IA18.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
永远少年完成签到,获得积分10
1秒前
niu1发布了新的文献求助10
1秒前
2秒前
Danny完成签到,获得积分10
2秒前
Lsx完成签到 ,获得积分10
2秒前
又胖了发布了新的文献求助10
3秒前
3秒前
小小飞发布了新的文献求助20
4秒前
4秒前
4秒前
5秒前
wanci应助NorthWang采纳,获得10
5秒前
zhen完成签到,获得积分10
7秒前
ns发布了新的文献求助30
8秒前
9秒前
逐风完成签到,获得积分10
9秒前
无奈的酒窝完成签到,获得积分10
10秒前
10秒前
11秒前
blingbling发布了新的文献求助10
11秒前
今后应助SherlockLiu采纳,获得30
13秒前
daniel发布了新的文献求助10
13秒前
Jason应助温言采纳,获得20
14秒前
逐风发布了新的文献求助30
15秒前
hhzz发布了新的文献求助10
15秒前
日月轮回完成签到,获得积分10
16秒前
17秒前
Yimim发布了新的文献求助10
17秒前
小小li完成签到 ,获得积分10
17秒前
小蘑菇应助细腻晓露采纳,获得10
17秒前
又胖了完成签到,获得积分10
18秒前
Eva完成签到,获得积分10
19秒前
19秒前
喵喵喵完成签到,获得积分20
19秒前
独摇之完成签到,获得积分10
19秒前
怡然雁凡完成签到,获得积分10
19秒前
顾jiu完成签到,获得积分10
20秒前
科研通AI5应助热依汗古丽采纳,获得10
20秒前
优秀剑愁完成签到 ,获得积分10
20秒前
敏感网络发布了新的文献求助50
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808