亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Shared Control Strategy for Reach and Grasp of Multiple Objects Using Robot Vision and Noninvasive Brain–Computer Interface

脑-机接口 抓住 工作区 冗余(工程) 计算机科学 机器人 接口(物质) 会话(web分析) 块(置换群论) 机械臂 任务(项目管理) 人工智能 人机交互 计算机视觉 工程类 脑电图 数学 心理学 几何学 系统工程 气泡 精神科 最大气泡压力法 并行计算 万维网 程序设计语言 操作系统
作者
Xu Yang,Heng Zhang,Linfeng Cao,Xiaokang Shu,Dingguo Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 360-372 被引量:25
标识
DOI:10.1109/tase.2020.3034826
摘要

It is ambitious to develop a brain-controlled robotic arm for some patients with motor impairments to perform activities of daily living using brain–computer interfaces (BCIs). Despite much progress achieved, this mission is still very challenging mainly due to the poor decoding performance of BCIs. The problem is even exacerbated in the case of noninvasive BCIs. A shared control strategy is developed in this work to realize flexible robotic arm control for reach and grasp of multiple objects. With the intelligent assistance provided by robot vision, the subject was only required to finish gross reaching movement and target selection using a simple motor imagery-based BCI with binary output. Along with the user control, the robotic arm, which identified and localized potential targets within the workspace in the background, was capable of providing both trajectory correction in the reaching phase to reduce trajectory redundancy and autonomous grasping assistance in the phase of grasp. Ten subjects participated in the experiments containing one session of two-block grasping tasks with fixed locations and another one of randomly placed three-block grasping tasks. The results of the experiments demonstrated substantial improvement with the shared control system. Compared with the single BCI control, the success rate of shared control was significantly higher ( $p < 0.001$ for group performance), and moreover, the task completion time and perceived difficulty were significantly lower ( $p < 0.001$ for group performance both), indicating the potential of our proposed shared control system in real applications. Note to Practitioners—This article is motivated by the problem of dexterous robotic arm control based on a brain–computer interface (BCI). For people suffering from severe neuromuscular disorders or accident injuries, a brain-controlled robotic arm is expected to provide assistance in their daily lives. A primary bottleneck to achieve the objective is that the information transfer rate of current BCIs is not high enough to produce multiple and reliable commands during the online robotic control. In this work, machine autonomy is incorporated in a BCI-controlled robotic arm system, where the user and machine can work together to reach and grasp multiple objects in a given task. The intelligent robot system autonomously localized the potential targets and provided trajectory correction and grasping assistance accordingly. Meanwhile, the user only needed to complete gross reaching movement and target selection with a basic binary motor imagery-based BCI, which reduced the task difficulty and retained the volitional involvement of the user at the same time. The results of the experiments showed that the accuracy and efficiency of grasping tasks increased significantly in the shared control mode together with a significant decrease in the perceived mental workload, which indicates that our proposed shared control system is effective and user-friendly in practice. In the future, more feedback information will be introduced to enhance the task performance further, and a wheelchair-mounted robotic arm system will be developed for greater flexibility. In addition, more functional task modules (e.g., self-feeding and opening doors) should be integrated for more practical utilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨完成签到,获得积分10
2秒前
wonder123完成签到,获得积分10
3秒前
Ricardo完成签到 ,获得积分10
8秒前
9秒前
10秒前
明亮不乐发布了新的文献求助10
15秒前
16秒前
积极废物完成签到 ,获得积分10
38秒前
48秒前
54秒前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
oo发布了新的文献求助10
1分钟前
星辰大海应助oo采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
晓晓发布了新的文献求助150
2分钟前
在水一方应助81299采纳,获得10
2分钟前
彩虹儿应助琉忆采纳,获得10
2分钟前
晓晓完成签到,获得积分10
2分钟前
2分钟前
CoCoco完成签到 ,获得积分10
2分钟前
nito发布了新的文献求助10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
2分钟前
zzr发布了新的文献求助30
2分钟前
81299发布了新的文献求助10
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
81299完成签到,获得积分20
2分钟前
3分钟前
morena应助科研通管家采纳,获得30
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
思源应助畅快的涵蕾采纳,获得10
3分钟前
海派Hi完成签到 ,获得积分10
3分钟前
3分钟前
李健应助皮托采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4917978
求助须知:如何正确求助?哪些是违规求助? 4190833
关于积分的说明 13015373
捐赠科研通 3960469
什么是DOI,文献DOI怎么找? 2171288
邀请新用户注册赠送积分活动 1189333
关于科研通互助平台的介绍 1097557