已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Shared Control Strategy for Reach and Grasp of Multiple Objects Using Robot Vision and Noninvasive Brain–Computer Interface

脑-机接口 抓住 工作区 冗余(工程) 计算机科学 机器人 接口(物质) 会话(web分析) 块(置换群论) 机械臂 任务(项目管理) 人工智能 人机交互 计算机视觉 工程类 脑电图 数学 万维网 系统工程 程序设计语言 并行计算 气泡 几何学 最大气泡压力法 精神科 操作系统 心理学
作者
Xu Yang,Heng Zhang,Linfeng Cao,Xiaokang Shu,Dingguo Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 360-372 被引量:25
标识
DOI:10.1109/tase.2020.3034826
摘要

It is ambitious to develop a brain-controlled robotic arm for some patients with motor impairments to perform activities of daily living using brain–computer interfaces (BCIs). Despite much progress achieved, this mission is still very challenging mainly due to the poor decoding performance of BCIs. The problem is even exacerbated in the case of noninvasive BCIs. A shared control strategy is developed in this work to realize flexible robotic arm control for reach and grasp of multiple objects. With the intelligent assistance provided by robot vision, the subject was only required to finish gross reaching movement and target selection using a simple motor imagery-based BCI with binary output. Along with the user control, the robotic arm, which identified and localized potential targets within the workspace in the background, was capable of providing both trajectory correction in the reaching phase to reduce trajectory redundancy and autonomous grasping assistance in the phase of grasp. Ten subjects participated in the experiments containing one session of two-block grasping tasks with fixed locations and another one of randomly placed three-block grasping tasks. The results of the experiments demonstrated substantial improvement with the shared control system. Compared with the single BCI control, the success rate of shared control was significantly higher ( $p < 0.001$ for group performance), and moreover, the task completion time and perceived difficulty were significantly lower ( $p < 0.001$ for group performance both), indicating the potential of our proposed shared control system in real applications. Note to Practitioners—This article is motivated by the problem of dexterous robotic arm control based on a brain–computer interface (BCI). For people suffering from severe neuromuscular disorders or accident injuries, a brain-controlled robotic arm is expected to provide assistance in their daily lives. A primary bottleneck to achieve the objective is that the information transfer rate of current BCIs is not high enough to produce multiple and reliable commands during the online robotic control. In this work, machine autonomy is incorporated in a BCI-controlled robotic arm system, where the user and machine can work together to reach and grasp multiple objects in a given task. The intelligent robot system autonomously localized the potential targets and provided trajectory correction and grasping assistance accordingly. Meanwhile, the user only needed to complete gross reaching movement and target selection with a basic binary motor imagery-based BCI, which reduced the task difficulty and retained the volitional involvement of the user at the same time. The results of the experiments showed that the accuracy and efficiency of grasping tasks increased significantly in the shared control mode together with a significant decrease in the perceived mental workload, which indicates that our proposed shared control system is effective and user-friendly in practice. In the future, more feedback information will be introduced to enhance the task performance further, and a wheelchair-mounted robotic arm system will be developed for greater flexibility. In addition, more functional task modules (e.g., self-feeding and opening doors) should be integrated for more practical utilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
绾妤完成签到 ,获得积分10
刚刚
光能使者完成签到,获得积分10
1秒前
彭于彦祖应助瘦瘦的寒珊采纳,获得50
1秒前
1秒前
3秒前
英姑应助花花采纳,获得10
3秒前
人文完成签到 ,获得积分10
4秒前
4秒前
Liao完成签到 ,获得积分10
5秒前
czy完成签到 ,获得积分10
5秒前
5秒前
无奈以南完成签到 ,获得积分10
7秒前
江子川发布了新的文献求助10
7秒前
科研通AI2S应助碧蓝板栗采纳,获得20
8秒前
心灵美鑫完成签到 ,获得积分10
10秒前
馋馋完成签到,获得积分10
11秒前
欢喜梦凡完成签到 ,获得积分10
12秒前
开拖拉机的芍药完成签到 ,获得积分10
13秒前
linuo完成签到,获得积分10
13秒前
小凯完成签到 ,获得积分10
16秒前
李健应助Assure采纳,获得10
16秒前
安然完成签到 ,获得积分10
17秒前
忘皆空发布了新的文献求助10
18秒前
朴实初夏完成签到 ,获得积分10
20秒前
Rw完成签到 ,获得积分10
21秒前
Alan完成签到 ,获得积分10
21秒前
23秒前
24秒前
满唐完成签到 ,获得积分10
26秒前
27秒前
33秒前
瘦瘦的寒珊完成签到,获得积分10
34秒前
科研畜生发布了新的文献求助10
36秒前
36秒前
小白完成签到,获得积分10
37秒前
小白完成签到 ,获得积分10
37秒前
义气的元柏完成签到 ,获得积分10
38秒前
汉堡包应助科研小白采纳,获得10
41秒前
追寻清完成签到,获得积分10
41秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330336
求助须知:如何正确求助?哪些是违规求助? 2959888
关于积分的说明 8597669
捐赠科研通 2638476
什么是DOI,文献DOI怎么找? 1444389
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656720