数学
光谱分析
偏微分方程
操作员(生物学)
半椭圆算子
微分算子的符号
应用数学
微分方程
数学分析
微分算子
物理
化学
微分代数方程
常微分方程
生物化学
量子力学
转录因子
光谱学
基因
抑制因子
作者
Hiroya Nakao,Igor Mezić
出处
期刊:Chaos
[American Institute of Physics]
日期:2020-11-01
卷期号:30 (11)
被引量:23
摘要
We provide an overview of the Koopman-operator analysis for a class of partial differential equations describing relaxation of the field variable to a stable stationary state. We introduce Koopman eigenfunctionals of the system and use the notion of conjugacy to develop spectral expansion of the Koopman operator. For linear systems such as the diffusion equation, the Koopman eigenfunctionals can be expressed as linear functionals of the field variable. The notion of inertial manifolds is shown to correspond to joint zero level sets of Koopman eigenfunctionals, and the notion of isostables is defined as the level sets of the slowest decaying Koopman eigenfunctional. Linear diffusion equation, nonlinear Burgers equation, and nonlinear phase-diffusion equation are analyzed as examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI