An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications

偏微分方程 有限元法 离散化 计算机科学 搭配(遥感) 功能(生物学) 计算力学 灵活性(工程) 数学优化 数学 应用数学 机器学习 数学分析 统计 物理 进化生物学 生物 热力学
作者
Esteban Samaniego,Cosmin Anitescu,Somdatta Goswami,Vien Minh Nguyen‐Thanh,Hongwei Guo,Khader M. Hamdia,Xiaoying Zhuang,Timon Rabczuk
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:362: 112790-112790 被引量:1551
标识
DOI:10.1016/j.cma.2019.112790
摘要

Partial Differential Equations (PDE) are fundamental to model different phenomena in science and engineering mathematically. Solving them is a crucial step towards a precise knowledge of the behaviour of natural and engineered systems. In general, in order to solve PDEs that represent real systems to an acceptable degree, analytical methods are usually not enough. One has to resort to discretization methods. For engineering problems, probably the best known option is the finite element method (FEM). However, powerful alternatives such as mesh-free methods and Isogeometric Analysis (IGA) are also available. The fundamental idea is to approximate the solution of the PDE by means of functions specifically built to have some desirable properties. In this contribution, we explore Deep Neural Networks (DNNs) as an option for approximation. They have shown impressive results in areas such as visual recognition. DNNs are regarded here as function approximation machines. There is great flexibility to define their structure and important advances in the architecture and the efficiency of the algorithms to implement them make DNNs a very interesting alternative to approximate the solution of a PDE. We concentrate in applications that have an interest for Computational Mechanics. Most contributions that have decided to explore this possibility have adopted a collocation strategy. In this contribution, we concentrate in mechanical problems and analyze the energetic format of the PDE. The energy of a mechanical system seems to be the natural loss function for a machine learning method to approach a mechanical problem. As proofs of concept, we deal with several problems and explore the capabilities of the method for applications in engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
彭于晏应助爱撒娇的黑米采纳,获得10
1秒前
1秒前
黑洞完成签到,获得积分10
1秒前
1秒前
dyk发布了新的文献求助10
1秒前
可爱的函函应助林慕然2023采纳,获得10
1秒前
早点睡觉发布了新的文献求助10
2秒前
赘婿应助Daisy采纳,获得10
2秒前
DL完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
李爱国应助koreyoshi采纳,获得10
3秒前
户学静发布了新的文献求助10
3秒前
桀庚发布了新的文献求助10
3秒前
传奇3应助WN采纳,获得10
3秒前
hsy309完成签到,获得积分10
4秒前
foxdaopo完成签到,获得积分10
4秒前
fabian完成签到,获得积分10
5秒前
5秒前
我是老大应助大胆诗云采纳,获得10
5秒前
gaugua发布了新的文献求助10
6秒前
深情安青应助亚铁氰化钾采纳,获得10
6秒前
颖火虫完成签到,获得积分10
6秒前
6秒前
GongPeijie完成签到,获得积分10
6秒前
6秒前
考尔菲德完成签到,获得积分10
7秒前
zdt发布了新的文献求助10
7秒前
TRY发布了新的文献求助10
7秒前
7秒前
Leon发布了新的文献求助10
7秒前
7秒前
上官若男应助LYZSh采纳,获得10
7秒前
8秒前
小小完成签到,获得积分10
8秒前
dynamoo发布了新的文献求助200
8秒前
8秒前
星star发布了新的文献求助10
8秒前
JamesPei应助DuLab李哥采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219