An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications

偏微分方程 有限元法 离散化 计算机科学 搭配(遥感) 功能(生物学) 计算力学 灵活性(工程) 数学优化 数学 应用数学 机器学习 数学分析 统计 物理 进化生物学 生物 热力学
作者
Esteban Samaniego,Cosmin Anitescu,Somdatta Goswami,Vien Minh Nguyen‐Thanh,Hongwei Guo,Khader M. Hamdia,Xiaoying Zhuang,Timon Rabczuk
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:362: 112790-112790 被引量:1401
标识
DOI:10.1016/j.cma.2019.112790
摘要

Partial Differential Equations (PDE) are fundamental to model different phenomena in science and engineering mathematically. Solving them is a crucial step towards a precise knowledge of the behaviour of natural and engineered systems. In general, in order to solve PDEs that represent real systems to an acceptable degree, analytical methods are usually not enough. One has to resort to discretization methods. For engineering problems, probably the best known option is the finite element method (FEM). However, powerful alternatives such as mesh-free methods and Isogeometric Analysis (IGA) are also available. The fundamental idea is to approximate the solution of the PDE by means of functions specifically built to have some desirable properties. In this contribution, we explore Deep Neural Networks (DNNs) as an option for approximation. They have shown impressive results in areas such as visual recognition. DNNs are regarded here as function approximation machines. There is great flexibility to define their structure and important advances in the architecture and the efficiency of the algorithms to implement them make DNNs a very interesting alternative to approximate the solution of a PDE. We concentrate in applications that have an interest for Computational Mechanics. Most contributions that have decided to explore this possibility have adopted a collocation strategy. In this contribution, we concentrate in mechanical problems and analyze the energetic format of the PDE. The energy of a mechanical system seems to be the natural loss function for a machine learning method to approach a mechanical problem. As proofs of concept, we deal with several problems and explore the capabilities of the method for applications in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助冷酷严青采纳,获得10
刚刚
1秒前
诺颜爱完成签到,获得积分10
1秒前
都可以完成签到,获得积分10
2秒前
李健的小迷弟应助zz采纳,获得10
2秒前
mauve完成签到 ,获得积分10
2秒前
寄草完成签到,获得积分10
2秒前
impulsive完成签到,获得积分10
3秒前
lisier完成签到,获得积分10
3秒前
Anonymous完成签到,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
程希悦发布了新的文献求助10
5秒前
毛彬发布了新的文献求助10
5秒前
5秒前
烟花应助烟雨梦兮采纳,获得10
5秒前
wuta完成签到,获得积分10
6秒前
6秒前
饱满的小霜完成签到,获得积分20
6秒前
123完成签到,获得积分10
6秒前
诺颜爱发布了新的文献求助30
6秒前
虚幻芷完成签到,获得积分10
7秒前
Hello应助自然有手就行采纳,获得10
7秒前
疯狂老登完成签到,获得积分10
8秒前
华仔应助舒一一采纳,获得10
8秒前
kasumin完成签到,获得积分10
9秒前
脑洞疼应助Moscrol采纳,获得10
9秒前
文献通完成签到 ,获得积分10
9秒前
甜蜜寄文发布了新的文献求助10
9秒前
Shina完成签到,获得积分10
10秒前
10秒前
二号发布了新的文献求助10
11秒前
小杜发布了新的文献求助10
12秒前
pureivy22完成签到,获得积分10
12秒前
冷酷严青发布了新的文献求助10
13秒前
刻苦千琴完成签到,获得积分10
13秒前
wlm完成签到,获得积分10
13秒前
栀初发布了新的文献求助10
13秒前
大模型应助木子西采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582