An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications

偏微分方程 有限元法 离散化 计算机科学 搭配(遥感) 功能(生物学) 计算力学 灵活性(工程) 数学优化 数学 应用数学 机器学习 数学分析 统计 物理 进化生物学 生物 热力学
作者
Esteban Samaniego,Cosmin Anitescu,Somdatta Goswami,Vien Minh Nguyen‐Thanh,Hongwei Guo,Khader M. Hamdia,Xiaoying Zhuang,Timon Rabczuk
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:362: 112790-112790 被引量:1551
标识
DOI:10.1016/j.cma.2019.112790
摘要

Partial Differential Equations (PDE) are fundamental to model different phenomena in science and engineering mathematically. Solving them is a crucial step towards a precise knowledge of the behaviour of natural and engineered systems. In general, in order to solve PDEs that represent real systems to an acceptable degree, analytical methods are usually not enough. One has to resort to discretization methods. For engineering problems, probably the best known option is the finite element method (FEM). However, powerful alternatives such as mesh-free methods and Isogeometric Analysis (IGA) are also available. The fundamental idea is to approximate the solution of the PDE by means of functions specifically built to have some desirable properties. In this contribution, we explore Deep Neural Networks (DNNs) as an option for approximation. They have shown impressive results in areas such as visual recognition. DNNs are regarded here as function approximation machines. There is great flexibility to define their structure and important advances in the architecture and the efficiency of the algorithms to implement them make DNNs a very interesting alternative to approximate the solution of a PDE. We concentrate in applications that have an interest for Computational Mechanics. Most contributions that have decided to explore this possibility have adopted a collocation strategy. In this contribution, we concentrate in mechanical problems and analyze the energetic format of the PDE. The energy of a mechanical system seems to be the natural loss function for a machine learning method to approach a mechanical problem. As proofs of concept, we deal with several problems and explore the capabilities of the method for applications in engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一星发布了新的文献求助10
1秒前
3秒前
隐形寄柔发布了新的文献求助10
3秒前
Golden完成签到,获得积分10
4秒前
崔风机完成签到,获得积分20
5秒前
科研小白完成签到,获得积分10
6秒前
6秒前
6秒前
夜已深完成签到,获得积分10
6秒前
7秒前
entropy完成签到,获得积分10
7秒前
8秒前
科研通AI6应助崔风机采纳,获得10
9秒前
搜集达人应助懒洋洋的猫采纳,获得10
9秒前
梅西完成签到 ,获得积分10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
juzi_yugan发布了新的文献求助30
11秒前
12秒前
施白玉发布了新的文献求助10
12秒前
bkagyin应助薯片采纳,获得10
12秒前
CC发布了新的文献求助10
12秒前
张111发布了新的文献求助10
13秒前
MXX完成签到 ,获得积分10
13秒前
JamesPei应助研友_qZ6qAn采纳,获得10
13秒前
科研通AI6应助lsw采纳,获得10
13秒前
13秒前
13秒前
15秒前
KK完成签到,获得积分10
15秒前
16秒前
胖胖完成签到,获得积分10
16秒前
zyxhaian发布了新的文献求助10
17秒前
上天的朱发布了新的文献求助10
17秒前
墨绝发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836