An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications

偏微分方程 有限元法 离散化 计算机科学 搭配(遥感) 功能(生物学) 计算力学 灵活性(工程) 数学优化 数学 应用数学 机器学习 数学分析 统计 物理 进化生物学 生物 热力学
作者
Esteban Samaniego,Cosmin Anitescu,Somdatta Goswami,Vien Minh Nguyen‐Thanh,Hongwei Guo,Khader M. Hamdia,Xiaoying Zhuang,Timon Rabczuk
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:362: 112790-112790 被引量:1551
标识
DOI:10.1016/j.cma.2019.112790
摘要

Partial Differential Equations (PDE) are fundamental to model different phenomena in science and engineering mathematically. Solving them is a crucial step towards a precise knowledge of the behaviour of natural and engineered systems. In general, in order to solve PDEs that represent real systems to an acceptable degree, analytical methods are usually not enough. One has to resort to discretization methods. For engineering problems, probably the best known option is the finite element method (FEM). However, powerful alternatives such as mesh-free methods and Isogeometric Analysis (IGA) are also available. The fundamental idea is to approximate the solution of the PDE by means of functions specifically built to have some desirable properties. In this contribution, we explore Deep Neural Networks (DNNs) as an option for approximation. They have shown impressive results in areas such as visual recognition. DNNs are regarded here as function approximation machines. There is great flexibility to define their structure and important advances in the architecture and the efficiency of the algorithms to implement them make DNNs a very interesting alternative to approximate the solution of a PDE. We concentrate in applications that have an interest for Computational Mechanics. Most contributions that have decided to explore this possibility have adopted a collocation strategy. In this contribution, we concentrate in mechanical problems and analyze the energetic format of the PDE. The energy of a mechanical system seems to be the natural loss function for a machine learning method to approach a mechanical problem. As proofs of concept, we deal with several problems and explore the capabilities of the method for applications in engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
1秒前
NexusExplorer应助伽娜采纳,获得10
1秒前
1秒前
角落的蘑菇完成签到,获得积分10
1秒前
1秒前
1秒前
笑点低易真完成签到,获得积分10
2秒前
Lora完成签到,获得积分10
2秒前
老黄鱼完成签到,获得积分10
2秒前
止戈为武完成签到,获得积分10
2秒前
41完成签到,获得积分10
2秒前
丘比特应助现实的电源采纳,获得10
2秒前
华仔应助浮浮世世采纳,获得10
3秒前
爆米花应助wuran采纳,获得10
3秒前
恬恬发布了新的文献求助10
3秒前
4秒前
4秒前
十里八乡俊俏后生完成签到 ,获得积分10
4秒前
岸边渔客发布了新的文献求助10
4秒前
xjh完成签到,获得积分10
5秒前
qingmoheng应助qiuli采纳,获得10
5秒前
5秒前
剑影发布了新的文献求助10
5秒前
汉堡包应助宫阙采纳,获得10
5秒前
5秒前
6秒前
彭浩完成签到 ,获得积分10
6秒前
6秒前
张i鹅完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
xiaomi完成签到,获得积分10
7秒前
7秒前
ruiwing完成签到,获得积分10
7秒前
海纳百川完成签到,获得积分10
8秒前
故里发布了新的文献求助10
8秒前
8秒前
wu完成签到,获得积分20
8秒前
谦让靖儿发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
千里发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285