Spine Computed Tomography to Magnetic Resonance Image Synthesis Using Generative Adversarial Networks : A Preliminary Study.

图像(数学) 计算机科学 计算机视觉 放射科 生成对抗网络 脊柱(分子生物学) 深度学习
作者
Jung Hwan Lee,In Ho Han,Dong Hwan Kim,Seung Han Yu,In Sook Lee,You Seon Song,Seongsu Joo,Cheng-Bin Jin,Hakil Kim
出处
期刊:Journal of Korean Neurosurgical Society [Korean Neurosurgical Society]
卷期号:63 (3): 386-396 被引量:15
标识
DOI:10.3340/jkns.2019.0084
摘要

Objective To generate synthetic spine magnetic resonance (MR) images from spine computed tomography (CT) using generative adversarial networks (GANs), as well as to determine the similarities between synthesized and real MR images. Methods GANs were trained to transform spine CT image slices into spine magnetic resonance T2 weighted (MRT2) axial image slices by combining adversarial loss and voxel-wise loss. Experiments were performed using 280 pairs of lumbar spine CT scans and MRT2 images. The MRT2 images were then synthesized from 15 other spine CT scans. To evaluate whether the synthetic MR images were realistic, two radiologists, two spine surgeons, and two residents blindly classified the real and synthetic MRT2 images. Two experienced radiologists then evaluated the similarities between subdivisions of the real and synthetic MRT2 images. Quantitative analysis of the synthetic MRT2 images was performed using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results The mean overall similarity of the synthetic MRT2 images evaluated by radiologists was 80.2%. In the blind classification of the real MRT2 images, the failure rate ranged from 0% to 40%. The MAE value of each image ranged from 13.75 to 34.24 pixels (mean, 21.19 pixels), and the PSNR of each image ranged from 61.96 to 68.16 dB (mean, 64.92 dB). Conclusion This was the first study to apply GANs to synthesize spine MR images from CT images. Despite the small dataset of 280 pairs, the synthetic MR images were relatively well implemented. Synthesis of medical images using GANs is a new paradigm of artificial intelligence application in medical imaging. We expect that synthesis of MR images from spine CT images using GANs will improve the diagnostic usefulness of CT. To better inform the clinical applications of this technique, further studies are needed involving a large dataset, a variety of pathologies, and other MR sequence of the lumbar spine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Mannone发布了新的文献求助10
2秒前
ZOEzoe发布了新的文献求助30
2秒前
3秒前
Jasper应助cannon8采纳,获得50
3秒前
3秒前
lily关注了科研通微信公众号
3秒前
大力的忆霜完成签到 ,获得积分10
3秒前
阳光海云发布了新的文献求助30
4秒前
4秒前
细腻的书雁完成签到,获得积分10
4秒前
吴家辉发布了新的文献求助10
5秒前
hui发布了新的文献求助10
5秒前
菠萝卷完成签到,获得积分10
6秒前
Dean完成签到,获得积分20
6秒前
Aten应助liars采纳,获得10
6秒前
金枪鱼子应助kjh采纳,获得30
6秒前
Robe完成签到,获得积分20
6秒前
鹤轸完成签到,获得积分10
7秒前
vv完成签到,获得积分10
7秒前
曾经碧蓉完成签到,获得积分20
7秒前
郑恩熙完成签到,获得积分10
7秒前
小雪糕完成签到,获得积分10
8秒前
大方弘文完成签到,获得积分10
9秒前
叶子完成签到,获得积分10
9秒前
9秒前
该房地产个人的完成签到,获得积分10
10秒前
runer发布了新的文献求助10
10秒前
冯宇完成签到,获得积分20
10秒前
乐乐应助lqkcqmu采纳,获得30
11秒前
Leisure_Lee发布了新的文献求助30
13秒前
过氧化氢应助[刘小婷]采纳,获得10
13秒前
华仔应助小马过河采纳,获得10
14秒前
丢丢完成签到,获得积分10
14秒前
情怀应助Yellue采纳,获得10
14秒前
终生科研徒刑完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600