Spine Computed Tomography to Magnetic Resonance Image Synthesis Using Generative Adversarial Networks : A Preliminary Study.

图像(数学) 计算机科学 计算机视觉 放射科 生成对抗网络 脊柱(分子生物学) 深度学习
作者
Jung Hwan Lee,In Ho Han,Dong Hwan Kim,Seung Han Yu,In Sook Lee,You Seon Song,Seongsu Joo,Cheng-Bin Jin,Hakil Kim
出处
期刊:Journal of Korean Neurosurgical Society [Korean Neurosurgical Society]
卷期号:63 (3): 386-396 被引量:15
标识
DOI:10.3340/jkns.2019.0084
摘要

Objective To generate synthetic spine magnetic resonance (MR) images from spine computed tomography (CT) using generative adversarial networks (GANs), as well as to determine the similarities between synthesized and real MR images. Methods GANs were trained to transform spine CT image slices into spine magnetic resonance T2 weighted (MRT2) axial image slices by combining adversarial loss and voxel-wise loss. Experiments were performed using 280 pairs of lumbar spine CT scans and MRT2 images. The MRT2 images were then synthesized from 15 other spine CT scans. To evaluate whether the synthetic MR images were realistic, two radiologists, two spine surgeons, and two residents blindly classified the real and synthetic MRT2 images. Two experienced radiologists then evaluated the similarities between subdivisions of the real and synthetic MRT2 images. Quantitative analysis of the synthetic MRT2 images was performed using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results The mean overall similarity of the synthetic MRT2 images evaluated by radiologists was 80.2%. In the blind classification of the real MRT2 images, the failure rate ranged from 0% to 40%. The MAE value of each image ranged from 13.75 to 34.24 pixels (mean, 21.19 pixels), and the PSNR of each image ranged from 61.96 to 68.16 dB (mean, 64.92 dB). Conclusion This was the first study to apply GANs to synthesize spine MR images from CT images. Despite the small dataset of 280 pairs, the synthetic MR images were relatively well implemented. Synthesis of medical images using GANs is a new paradigm of artificial intelligence application in medical imaging. We expect that synthesis of MR images from spine CT images using GANs will improve the diagnostic usefulness of CT. To better inform the clinical applications of this technique, further studies are needed involving a large dataset, a variety of pathologies, and other MR sequence of the lumbar spine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助小白采纳,获得10
1秒前
SciGPT应助小白采纳,获得10
1秒前
斯文败类应助小白采纳,获得30
2秒前
今后应助小白采纳,获得10
2秒前
机智绝悟发布了新的文献求助10
6秒前
tzb完成签到,获得积分10
8秒前
11秒前
lala完成签到,获得积分20
12秒前
12秒前
糊涂发布了新的文献求助20
15秒前
树上熊发布了新的文献求助10
15秒前
bryceeluo应助完美的一天采纳,获得10
17秒前
NexusExplorer应助lala采纳,获得10
18秒前
第八十六发布了新的文献求助10
19秒前
Always完成签到,获得积分10
19秒前
美好斓发布了新的文献求助10
20秒前
东箭南金发布了新的文献求助10
21秒前
23秒前
dominate应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
薰硝壤应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
薰硝壤应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
24秒前
orixero应助科研通管家采纳,获得10
24秒前
dominate应助科研通管家采纳,获得10
24秒前
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
24秒前
折花浅笑完成签到,获得积分10
25秒前
29秒前
大西瓜完成签到 ,获得积分10
30秒前
脑洞疼应助zjkzh采纳,获得10
32秒前
32秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3087327
求助须知:如何正确求助?哪些是违规求助? 2740025
关于积分的说明 7557198
捐赠科研通 2389737
什么是DOI,文献DOI怎么找? 1267375
科研通“疑难数据库(出版商)”最低求助积分说明 613656
版权声明 598611