激光阈值
材料科学
增益开关
光激发
光电子学
激光器
有机半导体
半导体激光器理论
半导体
连续波
激发态
光学
原子物理学
波长
物理
作者
Van T. N. Mai,Atul Shukla,A. M. Chathuranganie Senevirathne,Ilene Allison,Hyunsoo Lim,Romain J. Lepage,Sarah K. M. McGregor,Michael Wood,Toshinori Matsushima,Evan G. Moore,Elizabeth H. Krenske,Atula S. D. Sandanayaka,Chihaya Adachi,Ebinazar B. Namdas,Shih‐Chun Lo
标识
DOI:10.1002/adom.202001234
摘要
Abstract High mechanical flexibility and wavelength tunability of organic semiconductor materials have propelled the development of organic semiconductor lasers (OSLs) as a complementary technology to current inorganic lasers. While excellent progress has been made across multiple aspects of OSLs, demonstration of long‐pulse operation [quasi‐continuous wave (qCW) or continuous wave (CW)] lasing has presented significant challenges due to the detrimental accumulation of triplets under long‐pulse photoexcitation and substantial quenching of singlet excitons, arising from singlet‐triplet annihilation (STA). In particular, qCW or CW lasing from solution‐processed OSL materials has not been reported, and thus remains a long‐thought objective in optoelectronic research. Using a novel bis( N ‐carbazolylstyryl)‐9,9‐dihexylfluorene ( BSFCz ), the first solution‐processable organic laser dye demonstrating lasing oscillation in the long‐pulse photoexcitation regime (up to 10 ms pulse width) with a low threshold (420 W cm −2 ), which in part can be attributed to its negligible spectral overlap between triplet excited‐state absorption and laser emission, is herein reported. Temporal emission profiles below and above the lasing threshold also demonstrate that STA has a negligible effect on emission. These combined observations show BSFCz incur low losses due to triplet excited‐states, leading to extremely small changes in lasing thresholds when moving from pulsed to qCW (>1 ms) excitation.
科研通智能强力驱动
Strongly Powered by AbleSci AI