材料科学
阴极
阳极
功率密度
电容感应
化学工程
多孔性
离子
电容器
水溶液
电容
纳米技术
电解质
超级电容器
电极
复合材料
化学
功率(物理)
电气工程
物理
有机化学
量子力学
电压
物理化学
工程类
作者
Zhaodi Fan,Jia Jin,Chao Li,Qiang Cai,Chaohui Wei,Yuanlong Shao,Guifu Zou,Jingyu Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-02-12
卷期号:15 (2): 3098-3107
被引量:161
标识
DOI:10.1021/acsnano.0c09646
摘要
The construction of aqueous Zn-ion hybrid capacitors (ZICs) reconciling high energy/power density is practically meaningful yet remains a grand challenge. Herein, a high-capacitance and long-life ZIC is demonstrated by 3D printing of a Ti3C2 MXene cathode, affording optimized carrier transport, facile electrolyte penetration, and ample porosity. The 3D-printable additive-free MXene ink with desirable rheological property is derived by a fast gelation process employing a trace amount of divalent cations, which overcomes the tedious post-treatments required for additive removal. The thus-fabricated 3D-printed (3DP) MXene cathode results in a dual-ion storage mechanism to synergize pseudocapacitive behavior of H+ and electrical double-layer capacitive behavior of Zn2+, which is systematically probed by a wide suite of in situ/ex situ electroanalytic characterizations. The 3DP MXene cathode accordingly exhibits a favorable areal capacitance of 1006.4 mF cm–2 at 0.38 mA cm–2 and excellent rate capability (184.4 F g–1 at 10 A g–1), outperforming the state-of-the-art ZICs. More impressively, ZIC full cells comprising a 3DP MXene cathode and a 3DP Zn anode deliver a competitive energy/power density of 0.10 mWh cm–2/5.90 mW cm–2 as well as an ultralong lifespan (86.5% capacity retention over 6000 cycles at 10 mA cm–2).
科研通智能强力驱动
Strongly Powered by AbleSci AI