EEG Emotion Recognition Based on 3-D Feature Representation and Dilated Fully Convolutional Networks

计算机科学 脑电图 人工智能 卷积神经网络 模式识别(心理学) 特征提取 特征(语言学) 语音识别 特征学习 心理学 语言学 精神科 哲学
作者
Dongdong Li,Bing Chai,Zhe Wang,Hai Yang,Wenli Du
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 885-897 被引量:28
标识
DOI:10.1109/tcds.2021.3051465
摘要

Emotion recognition involving high-dimensional electroencephalogram (EEG) data demands urgently for a way to learn robust and representative EEG features for final classification. In this article, a novel framework combining 3-D feature representation and dilated fully convolutional network (3DFR-DFCN) is proposed for EEG emotion recognition (EER). To excavate the prior knowledge, such as interchannel and interfrequency-band correlation information, 1-D feature sequences are extended into 2-D electrode meshes of different frequency bands. Then, the acquired electrode meshes under multiple activation patterns are further constructed into 3-D EEG arrays to capture their complementary information. To realize cross-band and cross-channel feature learning, a dilated fully convolutional network (DFCN) is built to process the input feature array, then the spectral norm regularization (SNR) item is introduced to reduce the sensitivity to the disturbed EEG features. Both subject-dependent and subject-independent experiments have conducted on DEAP and DREAMER data sets. An average accuracy of 94.59%/81.03%, 95.32%/79.91%, 94.78%/80.23% are, respectively, obtained for valence, arousal, and dominance classifications for two kinds of experiments on the DEAP data set. The integration of spatial information and frequency-band information is meaningful for assessment of human emotional states in practical or clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
xiaomabaoli发布了新的文献求助10
2秒前
糖豆发布了新的文献求助10
4秒前
王江山发布了新的文献求助10
4秒前
七曜完成签到,获得积分10
5秒前
随安完成签到,获得积分20
7秒前
阿渺发布了新的文献求助10
8秒前
云海老发布了新的文献求助10
8秒前
8秒前
Sandrine完成签到,获得积分10
12秒前
盛夏蔚来发布了新的文献求助10
12秒前
14秒前
科研通AI2S应助塵埃采纳,获得10
14秒前
吱吱发布了新的文献求助10
14秒前
经年完成签到,获得积分20
15秒前
深情安青应助欣喜寻云采纳,获得10
15秒前
开心的秋寒完成签到,获得积分10
18秒前
淡定的依瑶完成签到,获得积分10
19秒前
充电宝应助Dawn采纳,获得10
19秒前
19秒前
Shaynin发布了新的文献求助10
19秒前
19秒前
图图完成签到,获得积分10
20秒前
Leofar发布了新的文献求助10
20秒前
zijunzheng发布了新的文献求助10
20秒前
20秒前
在水一方应助声声慢采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
吾将上下而求索应助经年采纳,获得10
23秒前
华健发布了新的文献求助10
24秒前
xiaomabaoli完成签到,获得积分20
24秒前
24秒前
斯文败类应助zjh采纳,获得10
24秒前
花景铭完成签到,获得积分10
26秒前
27秒前
捕鱼小猫勇往直前完成签到,获得积分10
27秒前
28秒前
29秒前
岳阳张震岳完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868