Multi-Scale Metric Learning for Few-Shot Learning

计算机科学 模式识别(心理学) 嵌入 特征(语言学) 棱锥(几何) 比例(比率) 人工智能 班级(哲学) 公制(单位) 特征学习 关系(数据库) 深度学习 卷积神经网络 特征提取 机器学习 数据挖掘 数学 物理 哲学 几何学 经济 量子力学 语言学 运营管理
作者
Wen Jiang,Kai Huang,Jie Geng,Xinyang Deng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1091-1102 被引量:218
标识
DOI:10.1109/tcsvt.2020.2995754
摘要

Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel few-shot learning method named multi-scale metric learning (MSML) is proposed to extract multi-scale features and learn the multi-scale relations between samples for the classification of few-shot learning. In the proposed method, a feature pyramid structure is introduced for multi-scale feature embedding, which aims to combine high-level strong semantic features with low-level but abundant visual features. Then a multi-scale relation generation network (MRGN) is developed for hierarchical metric learning, in which high-level features are corresponding to deeper metric learning while low-level features are corresponding to lighter metric learning. Moreover, a novel loss function named intra-class and inter-class relation loss (IIRL) is proposed to optimize the proposed deep network, which aims to strengthen the correlation between homogeneous groups of samples and weaken the correlation between heterogeneous groups of samples. Experimental results on mini ImageNet and tiered ImageNet demonstrate that the proposed method achieves superior performance in few-shot learning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kekerenren发布了新的文献求助10
刚刚
小蘑菇应助ZhangR采纳,获得10
1秒前
annali发布了新的文献求助10
2秒前
2秒前
2秒前
向前完成签到,获得积分10
2秒前
3秒前
俊鱼完成签到,获得积分10
3秒前
4秒前
smart完成签到,获得积分10
4秒前
5秒前
lhyqqt完成签到,获得积分10
5秒前
在水一方应助能干的吐司采纳,获得10
6秒前
7秒前
现代雪晴发布了新的文献求助10
8秒前
饼干加冰淇淋完成签到,获得积分10
8秒前
lxz发布了新的文献求助10
8秒前
9秒前
IanYoung71发布了新的文献求助10
9秒前
9秒前
沉默凡桃发布了新的文献求助10
10秒前
香蕉觅云应助Riggle G采纳,获得10
10秒前
彭于彦祖应助南瓜气气采纳,获得30
10秒前
11秒前
ZhangR完成签到,获得积分10
11秒前
小肉球完成签到 ,获得积分10
12秒前
12秒前
奥奥没有利饼干完成签到 ,获得积分10
12秒前
神之韵完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
xiaomaxia发布了新的文献求助10
13秒前
aa121599完成签到,获得积分20
14秒前
春去春来完成签到,获得积分10
15秒前
二甲亚砜发布了新的文献求助10
16秒前
17秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371