计算机科学
模式识别(心理学)
嵌入
特征(语言学)
棱锥(几何)
比例(比率)
人工智能
班级(哲学)
公制(单位)
特征学习
关系(数据库)
深度学习
卷积神经网络
特征提取
机器学习
数据挖掘
数学
物理
哲学
几何学
经济
量子力学
语言学
运营管理
作者
Wen Jiang,Kai Huang,Jie Geng,Xinyang Deng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology
[Institute of Electrical and Electronics Engineers]
日期:2020-05-20
卷期号:31 (3): 1091-1102
被引量:208
标识
DOI:10.1109/tcsvt.2020.2995754
摘要
Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel few-shot learning method named multi-scale metric learning (MSML) is proposed to extract multi-scale features and learn the multi-scale relations between samples for the classification of few-shot learning. In the proposed method, a feature pyramid structure is introduced for multi-scale feature embedding, which aims to combine high-level strong semantic features with low-level but abundant visual features. Then a multi-scale relation generation network (MRGN) is developed for hierarchical metric learning, in which high-level features are corresponding to deeper metric learning while low-level features are corresponding to lighter metric learning. Moreover, a novel loss function named intra-class and inter-class relation loss (IIRL) is proposed to optimize the proposed deep network, which aims to strengthen the correlation between homogeneous groups of samples and weaken the correlation between heterogeneous groups of samples. Experimental results on mini ImageNet and tiered ImageNet demonstrate that the proposed method achieves superior performance in few-shot learning problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI