Multi-Scale Metric Learning for Few-Shot Learning

计算机科学 模式识别(心理学) 嵌入 特征(语言学) 棱锥(几何) 比例(比率) 人工智能 班级(哲学) 公制(单位) 特征学习 关系(数据库) 深度学习 卷积神经网络 特征提取 机器学习 数据挖掘 数学 物理 哲学 几何学 经济 量子力学 语言学 运营管理
作者
Wen Jiang,Kai Huang,Jie Geng,Xinyang Deng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1091-1102 被引量:218
标识
DOI:10.1109/tcsvt.2020.2995754
摘要

Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel few-shot learning method named multi-scale metric learning (MSML) is proposed to extract multi-scale features and learn the multi-scale relations between samples for the classification of few-shot learning. In the proposed method, a feature pyramid structure is introduced for multi-scale feature embedding, which aims to combine high-level strong semantic features with low-level but abundant visual features. Then a multi-scale relation generation network (MRGN) is developed for hierarchical metric learning, in which high-level features are corresponding to deeper metric learning while low-level features are corresponding to lighter metric learning. Moreover, a novel loss function named intra-class and inter-class relation loss (IIRL) is proposed to optimize the proposed deep network, which aims to strengthen the correlation between homogeneous groups of samples and weaken the correlation between heterogeneous groups of samples. Experimental results on mini ImageNet and tiered ImageNet demonstrate that the proposed method achieves superior performance in few-shot learning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小七完成签到,获得积分10
1秒前
慕青应助Eve丶Paopaoxuan采纳,获得30
1秒前
Ava应助小北采纳,获得10
2秒前
欣喜大地发布了新的文献求助10
2秒前
qiuli完成签到,获得积分10
2秒前
香蕉鼠标完成签到,获得积分20
3秒前
3秒前
5秒前
6秒前
充电宝应助起起采纳,获得10
6秒前
坚强不言完成签到,获得积分10
6秒前
无尘发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI5应助1234567xjy采纳,获得10
10秒前
阔达凝雁发布了新的文献求助10
12秒前
13秒前
13秒前
KKKK完成签到,获得积分10
14秒前
111完成签到,获得积分10
14秒前
14秒前
喔喔完成签到,获得积分10
15秒前
美好的尔白完成签到,获得积分10
15秒前
16秒前
17秒前
zpp发布了新的文献求助10
17秒前
18秒前
19秒前
honghu发布了新的文献求助10
19秒前
orixero应助ZhouLu采纳,获得10
20秒前
mate发布了新的文献求助10
21秒前
汉堡包应助鱿鱼采纳,获得10
22秒前
22秒前
胖大海完成签到 ,获得积分10
23秒前
Jin发布了新的文献求助10
23秒前
葡萄成熟时完成签到,获得积分20
23秒前
23秒前
23秒前
23秒前
LY关注了科研通微信公众号
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749193
求助须知:如何正确求助?哪些是违规求助? 3292446
关于积分的说明 10076739
捐赠科研通 3007912
什么是DOI,文献DOI怎么找? 1651897
邀请新用户注册赠送积分活动 786893
科研通“疑难数据库(出版商)”最低求助积分说明 751861