Multi-Scale Metric Learning for Few-Shot Learning

计算机科学 模式识别(心理学) 嵌入 特征(语言学) 棱锥(几何) 比例(比率) 人工智能 班级(哲学) 公制(单位) 特征学习 关系(数据库) 深度学习 卷积神经网络 特征提取 机器学习 数据挖掘 数学 物理 几何学 哲学 语言学 运营管理 量子力学 经济
作者
Wen Jiang,Kai Huang,Jie Geng,Xinyang Deng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1091-1102 被引量:237
标识
DOI:10.1109/tcsvt.2020.2995754
摘要

Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel few-shot learning method named multi-scale metric learning (MSML) is proposed to extract multi-scale features and learn the multi-scale relations between samples for the classification of few-shot learning. In the proposed method, a feature pyramid structure is introduced for multi-scale feature embedding, which aims to combine high-level strong semantic features with low-level but abundant visual features. Then a multi-scale relation generation network (MRGN) is developed for hierarchical metric learning, in which high-level features are corresponding to deeper metric learning while low-level features are corresponding to lighter metric learning. Moreover, a novel loss function named intra-class and inter-class relation loss (IIRL) is proposed to optimize the proposed deep network, which aims to strengthen the correlation between homogeneous groups of samples and weaken the correlation between heterogeneous groups of samples. Experimental results on mini ImageNet and tiered ImageNet demonstrate that the proposed method achieves superior performance in few-shot learning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Luck完成签到,获得积分10
1秒前
1秒前
英姑应助笨蛋偷学采纳,获得10
1秒前
1秒前
tzr应助小蓝莓吃太胖采纳,获得10
2秒前
2秒前
3秒前
庄生完成签到,获得积分20
3秒前
xianyu完成签到,获得积分10
3秒前
3秒前
笑傲江湖完成签到,获得积分10
4秒前
脑洞疼应助qcj采纳,获得10
4秒前
4秒前
765254958发布了新的文献求助10
5秒前
xianyu发布了新的文献求助10
5秒前
呐殇完成签到,获得积分10
5秒前
关尔匕禾页完成签到,获得积分10
6秒前
庄生发布了新的文献求助10
7秒前
7秒前
carolsoongmm完成签到,获得积分10
7秒前
充电宝应助葡萄树采纳,获得10
7秒前
研友_nPxRRn发布了新的文献求助10
7秒前
崩溃发布了新的文献求助10
8秒前
呐殇发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
小柴发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
搜集达人应助wangfeng007采纳,获得30
9秒前
专注白昼应助王浩星采纳,获得10
10秒前
JamesPei应助轻松的蘑菇采纳,获得10
10秒前
俭朴爆米花完成签到,获得积分20
10秒前
旋转胡萝卜完成签到,获得积分10
12秒前
12秒前
酷波er应助研友_nPxRRn采纳,获得30
13秒前
13秒前
蓝天应助风清扬采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106