亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale Metric Learning for Few-Shot Learning

计算机科学 模式识别(心理学) 嵌入 特征(语言学) 棱锥(几何) 比例(比率) 人工智能 班级(哲学) 公制(单位) 特征学习 关系(数据库) 深度学习 卷积神经网络 特征提取 机器学习 数据挖掘 数学 物理 哲学 几何学 经济 量子力学 语言学 运营管理
作者
Wen Jiang,Kai Huang,Jie Geng,Xinyang Deng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1091-1102 被引量:208
标识
DOI:10.1109/tcsvt.2020.2995754
摘要

Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel few-shot learning method named multi-scale metric learning (MSML) is proposed to extract multi-scale features and learn the multi-scale relations between samples for the classification of few-shot learning. In the proposed method, a feature pyramid structure is introduced for multi-scale feature embedding, which aims to combine high-level strong semantic features with low-level but abundant visual features. Then a multi-scale relation generation network (MRGN) is developed for hierarchical metric learning, in which high-level features are corresponding to deeper metric learning while low-level features are corresponding to lighter metric learning. Moreover, a novel loss function named intra-class and inter-class relation loss (IIRL) is proposed to optimize the proposed deep network, which aims to strengthen the correlation between homogeneous groups of samples and weaken the correlation between heterogeneous groups of samples. Experimental results on mini ImageNet and tiered ImageNet demonstrate that the proposed method achieves superior performance in few-shot learning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chaotianjiao完成签到 ,获得积分10
3秒前
3秒前
6秒前
瑶咕隆咚完成签到,获得积分10
10秒前
liyanglin完成签到 ,获得积分10
10秒前
Yely完成签到,获得积分10
13秒前
小鸟芋圆露露完成签到 ,获得积分10
14秒前
doctorw完成签到 ,获得积分10
21秒前
23秒前
29秒前
zhangzhangzhang完成签到,获得积分10
36秒前
传奇3应助科研通管家采纳,获得10
38秒前
青羽凌雪应助科研通管家采纳,获得10
38秒前
大模型应助科研通管家采纳,获得10
39秒前
青羽凌雪应助科研通管家采纳,获得10
39秒前
41秒前
寒冷擎汉发布了新的文献求助20
45秒前
小灵通完成签到 ,获得积分10
45秒前
人间耙耙柑完成签到 ,获得积分10
49秒前
寒冷擎汉完成签到,获得积分10
54秒前
Orange应助xuan采纳,获得10
1分钟前
1分钟前
jinmuna发布了新的文献求助30
1分钟前
Esperanza完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Xxynysmhxs完成签到 ,获得积分10
1分钟前
qks完成签到 ,获得积分10
1分钟前
在水一方应助tarrsy采纳,获得30
1分钟前
赘婿应助will采纳,获得10
1分钟前
999完成签到,获得积分10
1分钟前
1分钟前
2分钟前
更深的蓝发布了新的文献求助10
2分钟前
luqong完成签到,获得积分10
2分钟前
天天好心覃完成签到 ,获得积分10
2分钟前
小灰灰完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307266
求助须知:如何正确求助?哪些是违规求助? 2940978
关于积分的说明 8500041
捐赠科研通 2615243
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663542
邀请新用户注册赠送积分活动 648382