T-Net: Nested encoder–decoder architecture for the main vessel segmentation in coronary angiography

编码器 计算机科学 网(多面体) 联营 特征(语言学) 解码方法 分割 块(置换群论) 人工智能 算法 模式识别(心理学) 过程(计算) 相似性(几何) 计算机视觉 图像(数学) 数学 几何学 操作系统 语言学 哲学
作者
Tae Youn Jun,Jihoon Kweon,Young-Hak Kim,Daeyoung Kim
出处
期刊:Neural Networks [Elsevier]
卷期号:128: 216-233 被引量:25
标识
DOI:10.1016/j.neunet.2020.05.002
摘要

In this paper, we proposed T-Net containing a small encoder-decoder inside the encoder-decoder structure (EDiED). T-Net overcomes the limitation that U-Net can only have a single set of the concatenate layer between encoder and decoder block. To be more precise, the U-Net symmetrically forms the concatenate layers, so the low-level feature of the encoder is connected to the latter part of the decoder, and the high-level feature is connected to the beginning of the decoder. T-Net arranges the pooling and up-sampling appropriately during the encoder process, and likewise during the decoding process so that feature-maps of various sizes are obtained in a single block. As a result, all features from the low-level to the high-level extracted from the encoder are delivered from the beginning of the decoder to predict a more accurate mask. We evaluated T-Net for the problem of segmenting three main vessels in coronary angiography images. The experiment consisted of a comparison of U-Net and T-Nets under the same conditions, and an optimized T-Net for the main vessel segmentation. As a result, T-Net recorded a Dice Similarity Coefficient score (DSC) of 0.815, 0.095 higher than that of U-Net, and the optimized T-Net recorded a DSC of 0.890 which was 0.170 higher than that of U-Net. In addition, we visualized the weight activation of the convolutional layer of T-Net and U-Net to show that T-Net actually predicts the mask from earlier decoders. Therefore, we expect that T-Net can be effectively applied to other similar medical image segmentation problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的松思完成签到,获得积分10
2秒前
隐形曼青应助kk采纳,获得10
3秒前
早上坏发布了新的文献求助20
4秒前
新123关注了科研通微信公众号
5秒前
吕嫣娆完成签到 ,获得积分10
9秒前
10秒前
bb完成签到,获得积分10
10秒前
LeonPan发布了新的文献求助10
10秒前
小二郎应助朝风采纳,获得10
10秒前
10秒前
杨亚轩完成签到,获得积分10
13秒前
zzx完成签到 ,获得积分10
14秒前
标致冰海完成签到 ,获得积分10
14秒前
15秒前
路宝发布了新的文献求助10
15秒前
李爱国应助irisy采纳,获得10
16秒前
19秒前
kk发布了新的文献求助10
19秒前
21秒前
深情安青应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
顺心牛排完成签到,获得积分10
24秒前
愤怒的山兰完成签到,获得积分10
24秒前
shhoing应助TK采纳,获得10
25秒前
Accept发布了新的文献求助10
26秒前
王俊发布了新的文献求助10
26秒前
Akim应助vagabond采纳,获得10
28秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008