T-Net: Nested encoder–decoder architecture for the main vessel segmentation in coronary angiography

编码器 计算机科学 网(多面体) 联营 特征(语言学) 解码方法 分割 块(置换群论) 人工智能 算法 模式识别(心理学) 过程(计算) 相似性(几何) 计算机视觉 图像(数学) 数学 几何学 操作系统 语言学 哲学
作者
Tae Youn Jun,Jihoon Kweon,Young-Hak Kim,Daeyoung Kim
出处
期刊:Neural Networks [Elsevier]
卷期号:128: 216-233 被引量:25
标识
DOI:10.1016/j.neunet.2020.05.002
摘要

In this paper, we proposed T-Net containing a small encoder-decoder inside the encoder-decoder structure (EDiED). T-Net overcomes the limitation that U-Net can only have a single set of the concatenate layer between encoder and decoder block. To be more precise, the U-Net symmetrically forms the concatenate layers, so the low-level feature of the encoder is connected to the latter part of the decoder, and the high-level feature is connected to the beginning of the decoder. T-Net arranges the pooling and up-sampling appropriately during the encoder process, and likewise during the decoding process so that feature-maps of various sizes are obtained in a single block. As a result, all features from the low-level to the high-level extracted from the encoder are delivered from the beginning of the decoder to predict a more accurate mask. We evaluated T-Net for the problem of segmenting three main vessels in coronary angiography images. The experiment consisted of a comparison of U-Net and T-Nets under the same conditions, and an optimized T-Net for the main vessel segmentation. As a result, T-Net recorded a Dice Similarity Coefficient score (DSC) of 0.815, 0.095 higher than that of U-Net, and the optimized T-Net recorded a DSC of 0.890 which was 0.170 higher than that of U-Net. In addition, we visualized the weight activation of the convolutional layer of T-Net and U-Net to show that T-Net actually predicts the mask from earlier decoders. Therefore, we expect that T-Net can be effectively applied to other similar medical image segmentation problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一枝完成签到 ,获得积分10
刚刚
梦在远方完成签到 ,获得积分10
刚刚
1秒前
asa发布了新的文献求助10
1秒前
1秒前
2秒前
冲浪男孩226完成签到 ,获得积分10
2秒前
3秒前
洋子完成签到,获得积分20
4秒前
有思想完成签到,获得积分10
4秒前
4秒前
王哈哈发布了新的文献求助10
5秒前
5秒前
TheBugsss完成签到,获得积分10
6秒前
洋子发布了新的文献求助10
6秒前
大个应助FU采纳,获得10
7秒前
7秒前
Duke完成签到,获得积分10
7秒前
8秒前
Yummy发布了新的文献求助10
8秒前
8秒前
10秒前
11秒前
林lin发布了新的文献求助10
11秒前
yin应助轻松的雨竹采纳,获得10
11秒前
13秒前
13秒前
花痴的骁发布了新的文献求助10
13秒前
zxy发布了新的文献求助10
14秒前
LYDZ1完成签到,获得积分10
14秒前
14秒前
wwww0wwww应助淡淡月饼采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
攻心完成签到,获得积分10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239297
求助须知:如何正确求助?哪些是违规求助? 2884668
关于积分的说明 8234537
捐赠科研通 2552834
什么是DOI,文献DOI怎么找? 1380958
科研通“疑难数据库(出版商)”最低求助积分说明 649132
邀请新用户注册赠送积分活动 624834