T-Net: Nested encoder–decoder architecture for the main vessel segmentation in coronary angiography

编码器 计算机科学 网(多面体) 联营 特征(语言学) 解码方法 分割 块(置换群论) 人工智能 算法 模式识别(心理学) 过程(计算) 相似性(几何) 计算机视觉 图像(数学) 数学 几何学 操作系统 语言学 哲学
作者
Tae Youn Jun,Jihoon Kweon,Young-Hak Kim,Daeyoung Kim
出处
期刊:Neural Networks [Elsevier]
卷期号:128: 216-233 被引量:25
标识
DOI:10.1016/j.neunet.2020.05.002
摘要

In this paper, we proposed T-Net containing a small encoder-decoder inside the encoder-decoder structure (EDiED). T-Net overcomes the limitation that U-Net can only have a single set of the concatenate layer between encoder and decoder block. To be more precise, the U-Net symmetrically forms the concatenate layers, so the low-level feature of the encoder is connected to the latter part of the decoder, and the high-level feature is connected to the beginning of the decoder. T-Net arranges the pooling and up-sampling appropriately during the encoder process, and likewise during the decoding process so that feature-maps of various sizes are obtained in a single block. As a result, all features from the low-level to the high-level extracted from the encoder are delivered from the beginning of the decoder to predict a more accurate mask. We evaluated T-Net for the problem of segmenting three main vessels in coronary angiography images. The experiment consisted of a comparison of U-Net and T-Nets under the same conditions, and an optimized T-Net for the main vessel segmentation. As a result, T-Net recorded a Dice Similarity Coefficient score (DSC) of 0.815, 0.095 higher than that of U-Net, and the optimized T-Net recorded a DSC of 0.890 which was 0.170 higher than that of U-Net. In addition, we visualized the weight activation of the convolutional layer of T-Net and U-Net to show that T-Net actually predicts the mask from earlier decoders. Therefore, we expect that T-Net can be effectively applied to other similar medical image segmentation problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
FashionBoy应助陆访文采纳,获得10
1秒前
bkagyin应助与枫采纳,获得10
2秒前
2秒前
丘比特应助听雨眠采纳,获得10
3秒前
4秒前
一二发布了新的文献求助20
4秒前
5秒前
科目三应助轻松雁蓉采纳,获得10
6秒前
SCI完成签到,获得积分10
6秒前
星辰大海应助yangyan采纳,获得10
6秒前
景凤灵完成签到,获得积分10
6秒前
fyy发布了新的文献求助10
7秒前
zhang发布了新的文献求助10
7秒前
花源应助飞天小女警采纳,获得10
7秒前
7秒前
光亮笑柳发布了新的文献求助10
8秒前
蒋美桥发布了新的文献求助10
8秒前
Lp发布了新的文献求助10
8秒前
8秒前
9秒前
12秒前
怕黑白亦发布了新的文献求助30
13秒前
13秒前
恒星的恒心完成签到 ,获得积分10
14秒前
与枫发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Ava应助Traveller丁采纳,获得10
17秒前
兴奋迎彤完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
冯梦颖完成签到,获得积分10
18秒前
眯眯眼的谷冬完成签到 ,获得积分10
18秒前
有趣的银发布了新的文献求助10
19秒前
19秒前
配言发布了新的文献求助10
21秒前
下一周完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039