Understanding solid solution strengthening at elevated temperatures in a creep-resistant Mg–Gd–Ca alloy

材料科学 蠕动 合金 固溶体 固溶强化 冶金
作者
Ning Mo,Ingrid McCarroll,Qiyang Tan,Anna V. Ceguerra,Ying Liu,Julie M. Cairney,Hajo Dieringa,Yuanding Huang,Bin Jiang,Fusheng Pan,Michael Bermingham,Ming-Xing Zhang
出处
期刊:Acta Materialia [Elsevier]
卷期号:181: 185-199 被引量:55
标识
DOI:10.1016/j.actamat.2019.09.058
摘要

Abstract The present work studies the strengthening mechanisms of a creep-resistant Mg-0.5Gd-1.2Ca (at.%) alloy at both room and elevated temperatures. Although peak-ageing (T6) at 180 °C for 32 h led to a significant increase in room temperature strength due to the precipitation strengthening by three types of precipitates (Mg2Ca, Mg5Gd on prismatic planes and a new type of Mg–Gd–Ca intermetallic compound on the basal plane), the as-solid solution treated (T4) alloy exhibited better resistance to temperature softening during compression and to stress relaxation at 180 °C and better creep resistance at 210 °C/100 MPa. The Gd–Ca co-clusters with short-range order in the Mg solid solution, which was verified, at the first time, by atom probe tomography (APT) analysis and atomic-resolution high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), were responsible for the solid solution hardening, offering a more effective strengthening effect through local order-strengthening. Such solid solution strengthening increased the thermal stability of the alloy structure at elevated temperatures, at least at early stage of the creep. Subsequently, dynamic precipitation started contributing to the creep resistance due to the formation of higher density of precipitates. However, in the T6 alloy, creep testing at elevated temperatures, particularly at 210 °C that was higher than the ageing temperature, led to coarsening of the precipitates, which acted as over ageing. As a result of such over ageing, the resistance of the T6 alloy to heat-induced softening was weakened, leading to lower creep resistance than the T4 alloy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任性翩跹发布了新的文献求助10
1秒前
smily完成签到,获得积分10
3秒前
3秒前
HtheJ完成签到 ,获得积分10
6秒前
健忘凌雪发布了新的文献求助10
6秒前
咕叽咕叽发布了新的文献求助10
10秒前
大龙哥886应助俊逸书琴采纳,获得10
10秒前
SciGPT应助任性翩跹采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
延胡索应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得50
13秒前
烟花应助科研通管家采纳,获得10
13秒前
lalala应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
lalala应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
lalala应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
cc应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
17秒前
简单千儿完成签到,获得积分10
20秒前
22秒前
Jasper应助小晟采纳,获得10
22秒前
飘逸寒梦完成签到 ,获得积分10
23秒前
7788完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560660
求助须知:如何正确求助?哪些是违规求助? 4645958
关于积分的说明 14676737
捐赠科研通 4587078
什么是DOI,文献DOI怎么找? 2516787
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461116