Machine learning (ML)-centric resource management in cloud computing: A review and future directions

云计算 计算机科学 供应 可扩展性 分布式计算 服务质量 资源管理(计算) 效用计算 工作量 云安全计算 计算机网络 数据库 操作系统
作者
Tahseen Khan,Wenhong Tian,Guangyao Zhou,Shashikant Ilager,Mingming Gong,Rajkumar Buyya
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:204: 103405-103405 被引量:75
标识
DOI:10.1016/j.jnca.2022.103405
摘要

Cloud computing has rapidly emerged as a model for delivering Internet-based utility computing services. Infrastructure as a Service (IaaS) is one of the most important and rapidly growing models in cloud computing. Scalability, quality of service, optimum utility, decreased overheads, higher throughput, reduced latency, specialised environment, cost-effectiveness, and a streamlined interface are some of the essential elements of cloud computing for IaaS. Traditionally, resource management has been done through static policies, which impose certain limitations in various dynamic scenarios, prompting cloud service providers to adopt data-driven, machine-learning-based approaches. Machine learning is being used to handle various resource management tasks, including workload estimation, task scheduling, VM consolidation, resource optimisation, and energy optimisation, among others. This paper provides a detailed review of machine learning-based resource management solutions. We begin by introducing background concepts of cloud computing like service models, deployment models, and machine learning use in cloud computing. Then we look at resource management challenges in cloud computing, categorise them based on various aspects of resource management types such as workload prediction, VM consolidation, resource provisioning, VM placement and thermal management, review current techniques for addressing these challenges, and evaluate their key benefits and drawbacks. Finally, we propose prospective future research directions based on observed resource management challenges and shortcomings in current approaches for solving these challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sunjin完成签到,获得积分20
1秒前
xx_2000完成签到,获得积分10
1秒前
2秒前
maoyu完成签到,获得积分20
2秒前
jfaioe完成签到,获得积分10
3秒前
4秒前
W2026完成签到,获得积分10
5秒前
6秒前
8秒前
Saluzi发布了新的文献求助10
9秒前
殇愈完成签到,获得积分10
10秒前
酷波er应助NeuroYan采纳,获得10
10秒前
10秒前
渡鸦12345完成签到,获得积分10
11秒前
11秒前
12秒前
14秒前
Ray发布了新的文献求助10
14秒前
小只发布了新的文献求助10
15秒前
16秒前
子车茗应助藤原拓海采纳,获得10
16秒前
John完成签到,获得积分10
17秒前
18秒前
传奇3应助Treasure采纳,获得10
18秒前
19秒前
YEEze完成签到,获得积分10
20秒前
21秒前
23秒前
Lucas应助kimi_saigou采纳,获得10
23秒前
23秒前
Jacky发布了新的文献求助10
24秒前
fff1完成签到,获得积分10
24秒前
NeuroYan发布了新的文献求助10
25秒前
fifteen发布了新的文献求助10
25秒前
斯文败类应助井一采纳,获得10
25秒前
彤光赫显完成签到 ,获得积分10
25秒前
田様应助小粉丝采纳,获得10
25秒前
vn发布了新的文献求助10
26秒前
大头不秃头完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163594
求助须知:如何正确求助?哪些是违规求助? 2814540
关于积分的说明 7905002
捐赠科研通 2474033
什么是DOI,文献DOI怎么找? 1317221
科研通“疑难数据库(出版商)”最低求助积分说明 631627
版权声明 602188