Machine learning (ML)-centric resource management in cloud computing: A review and future directions

云计算 计算机科学 供应 可扩展性 分布式计算 服务质量 资源管理(计算) 效用计算 工作量 云安全计算 计算机网络 数据库 操作系统
作者
Tahseen Khan,Wenhong Tian,Guangyao Zhou,Shashikant Ilager,Mingming Gong,Rajkumar Buyya
出处
期刊:Journal of Network and Computer Applications [Elsevier BV]
卷期号:204: 103405-103405 被引量:75
标识
DOI:10.1016/j.jnca.2022.103405
摘要

Cloud computing has rapidly emerged as a model for delivering Internet-based utility computing services. Infrastructure as a Service (IaaS) is one of the most important and rapidly growing models in cloud computing. Scalability, quality of service, optimum utility, decreased overheads, higher throughput, reduced latency, specialised environment, cost-effectiveness, and a streamlined interface are some of the essential elements of cloud computing for IaaS. Traditionally, resource management has been done through static policies, which impose certain limitations in various dynamic scenarios, prompting cloud service providers to adopt data-driven, machine-learning-based approaches. Machine learning is being used to handle various resource management tasks, including workload estimation, task scheduling, VM consolidation, resource optimisation, and energy optimisation, among others. This paper provides a detailed review of machine learning-based resource management solutions. We begin by introducing background concepts of cloud computing like service models, deployment models, and machine learning use in cloud computing. Then we look at resource management challenges in cloud computing, categorise them based on various aspects of resource management types such as workload prediction, VM consolidation, resource provisioning, VM placement and thermal management, review current techniques for addressing these challenges, and evaluate their key benefits and drawbacks. Finally, we propose prospective future research directions based on observed resource management challenges and shortcomings in current approaches for solving these challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zachary完成签到 ,获得积分10
刚刚
刚刚
刚刚
wy.he应助派大星采纳,获得10
刚刚
小可乐发布了新的文献求助10
刚刚
徐石龙发布了新的文献求助10
1秒前
2秒前
wang完成签到 ,获得积分10
3秒前
紫心完成签到,获得积分20
3秒前
力力力力力力力完成签到,获得积分10
5秒前
翻翻完成签到,获得积分10
5秒前
shenhang23发布了新的文献求助10
7秒前
9秒前
yar应助里里采纳,获得10
9秒前
萨尔莫斯完成签到,获得积分10
9秒前
派大赐完成签到,获得积分10
10秒前
10秒前
ll应助chrysan采纳,获得10
10秒前
无花果应助淡然的落雁采纳,获得10
13秒前
14秒前
踏实语芙完成签到,获得积分10
15秒前
科研小白发布了新的文献求助10
15秒前
15秒前
李小聪发布了新的文献求助10
16秒前
tree完成签到,获得积分10
17秒前
石上叶子君关注了科研通微信公众号
18秒前
汤思睿完成签到 ,获得积分10
22秒前
FGG完成签到,获得积分10
24秒前
le123zxc发布了新的文献求助10
24秒前
你坤叔公完成签到,获得积分20
24秒前
24秒前
24秒前
JamesPei应助111111采纳,获得10
24秒前
25秒前
Akim应助邓涛采纳,获得10
25秒前
Sandwich发布了新的文献求助20
26秒前
李小聪完成签到,获得积分10
26秒前
猪猪hero应助叫秋田犬的猫采纳,获得10
26秒前
28秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964247
求助须知:如何正确求助?哪些是违规求助? 3509993
关于积分的说明 11150385
捐赠科研通 3243923
什么是DOI,文献DOI怎么找? 1792230
邀请新用户注册赠送积分活动 873681
科研通“疑难数据库(出版商)”最低求助积分说明 803884