Meta grayscale adaptive network for 3D integrated renal structures segmentation

灰度 人工智能 分割 计算机科学 计算机视觉 模式识别(心理学) 深度学习 图像分割 图像(数学)
作者
Yuting He,Guanyu Yang,Jian Yang,Rongjun Ge,Youyong Kong,Xiaomei Zhu,Shaobo Zhang,Pengfei Shao,Shu Hu,Jean-Louis Dillenseger,Jean-Louis Coatrieux,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:71: 102055-102055 被引量:22
标识
DOI:10.1016/j.media.2021.102055
摘要

Three-dimensional (3D) integrated renal structures (IRS) segmentation targets segmenting the kidneys, renal tumors, arteries, and veins in one inference. Clinicians will benefit from the 3D IRS visual model for accurate preoperative planning and intraoperative guidance of laparoscopic partial nephrectomy (LPN). However, no success has been reported in 3D IRS segmentation due to the inherent challenges in grayscale distribution: low contrast caused by the narrow task-dependent distribution range of regions of interest (ROIs), and the networks representation preferences caused by the distribution variation inter-images. In this paper, we propose the Meta Greyscale Adaptive Network (MGANet), the first deep learning framework to simultaneously segment the kidney, renal tumors, arteries and veins on CTA images in one inference. It makes innovations in two collaborate aspects: 1) The Grayscale Interest Search (GIS) adaptively focuses segmentation networks on task-dependent grayscale distributions via scaling the window width and center with two cross-correlated coefficients for the first time, thus learning the fine-grained representation for fine segmentation. 2) The Meta Grayscale Adaptive (MGA) learning makes an image-level meta-learning strategy. It represents diverse robust features from multiple distributions, perceives the distribution characteristic, and generates the model parameters to fuse features dynamically according to image’s distribution, thus adapting the grayscale distribution variation. This study enrolls 123 patients and the average Dice coefficients of the renal structures are up to 87.9%. Fine selection of the task-dependent grayscale distribution ranges and personalized fusion of multiple representations on different distributions will lead to better 3D IRS segmentation quality. Extensive experiments with promising results on renal structures reveal powerful segmentation accuracy and great clinical significance in renal cancer treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助体贴的洋葱采纳,获得10
6秒前
同學你該吃藥了完成签到 ,获得积分10
9秒前
ljydhr完成签到,获得积分10
9秒前
gtgyh完成签到 ,获得积分10
12秒前
riceyellow完成签到,获得积分10
13秒前
徐涛完成签到 ,获得积分10
19秒前
迷你的夜天完成签到 ,获得积分10
19秒前
小二郎应助Liyipu采纳,获得10
24秒前
25秒前
Lucas应助wang5945采纳,获得10
31秒前
33秒前
lianliyou发布了新的文献求助10
33秒前
Liyipu发布了新的文献求助10
37秒前
风中的蜜蜂完成签到,获得积分10
37秒前
萧水白发布了新的文献求助100
38秒前
40秒前
jeremyher完成签到,获得积分10
47秒前
老白完成签到,获得积分10
49秒前
lianliyou发布了新的文献求助10
49秒前
阳炎完成签到,获得积分10
50秒前
清风完成签到 ,获得积分10
51秒前
元宝完成签到 ,获得积分10
52秒前
清爽的柚子完成签到 ,获得积分10
54秒前
听闻韬声依旧完成签到 ,获得积分10
55秒前
米博士完成签到,获得积分10
57秒前
爱静静应助科研通管家采纳,获得10
58秒前
火星上惜天完成签到 ,获得积分10
1分钟前
故意的问安完成签到 ,获得积分10
1分钟前
Justtry完成签到,获得积分10
1分钟前
CLTTTt完成签到,获得积分10
1分钟前
1分钟前
zzzyyc完成签到 ,获得积分10
1分钟前
lianliyou发布了新的文献求助10
1分钟前
王QQ完成签到 ,获得积分10
1分钟前
海荣完成签到,获得积分10
1分钟前
俞无声完成签到 ,获得积分10
1分钟前
三国杀校老弟完成签到,获得积分10
1分钟前
郑雅柔完成签到 ,获得积分10
1分钟前
怕黑半仙应助lianliyou采纳,获得10
1分钟前
怕黑半仙应助lianliyou采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381390
求助须知:如何正确求助?哪些是违规求助? 2996289
关于积分的说明 8767946
捐赠科研通 2681568
什么是DOI,文献DOI怎么找? 1468560
科研通“疑难数据库(出版商)”最低求助积分说明 679068
邀请新用户注册赠送积分活动 671118