Enhancing adversarial defense for medical image analysis systems with pruning and attention mechanism

稳健性(进化) 计算机科学 人工智能 对抗制 修剪 深度学习 医学影像学 水准点(测量) 机器学习 深层神经网络 图像(数学) 计算机视觉 基因 地理 化学 农学 生物 生物化学 大地测量学
作者
Lun Chen,Lu Zhao,Calvin Yu‐Chian Chen
出处
期刊:Medical Physics [Wiley]
卷期号:48 (10): 6198-6212 被引量:9
标识
DOI:10.1002/mp.15208
摘要

Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks (DNNs) are susceptible to small adversarial perturbations in the image, which raise safety concerns about the deployment of these systems in clinical settings.To improve the defense of the medical imaging system against adversarial examples, we propose a new model-based defense framework for medical image DNNs model equipped with pruning and attention mechanism module based on the analysis of the reason why existing medical image DNNs models are vulnerable to attacks from adversarial examples is that complex biological texture of medical imaging and overparameterized medical image DNNs model.Three benchmark medical image datasets have verified the effectiveness of our method in improving the robustness of medical image DNNs models. In the chest X-ray datasets, our defending method can even achieve up 77.18% defense rate for projected gradient descent attack and 69.49% defense rate for DeepFool attack. And through ablation experiments on the pruning module and the attention mechanism module, it is verified that the use of pruning and attention mechanism can effectively improve the robustness of the medical image DNNs model.Compared with the existing model-based defense methods proposed for natural images, our defense method is more suitable for medical images. Our method can be a general strategy to approach the design of more explainable and secure medical deep learning systems, and can be widely used in various medical image tasks to improve the robustness of medical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuxiusong完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
3秒前
共享精神应助最棒哒采纳,获得10
4秒前
回乐完成签到,获得积分10
4秒前
个性冰海发布了新的文献求助10
4秒前
汉堡包应助心落失采纳,获得10
5秒前
6秒前
FlipFlops完成签到,获得积分10
6秒前
潇潇暮雨完成签到,获得积分10
6秒前
纯真忆安发布了新的文献求助10
7秒前
安塞腰鼓发布了新的文献求助10
7秒前
7秒前
铅笔995完成签到,获得积分10
7秒前
7秒前
8秒前
墨墨叻发布了新的文献求助30
8秒前
zyw发布了新的文献求助10
9秒前
英姑应助超级的冷松采纳,获得10
9秒前
yyy发布了新的文献求助10
9秒前
在水一方应助阿尔法贝塔采纳,获得10
10秒前
10秒前
晓山青完成签到,获得积分10
10秒前
Alyssa完成签到,获得积分10
10秒前
搜集达人应助张婷婷采纳,获得10
11秒前
单雅慧发布了新的文献求助10
11秒前
11秒前
初阶玩家完成签到,获得积分10
12秒前
852应助cute666采纳,获得10
13秒前
小酒窝周周完成签到 ,获得积分10
13秒前
杨一发布了新的文献求助10
13秒前
Mr.Su完成签到 ,获得积分10
14秒前
efls发布了新的文献求助20
15秒前
个性向卉完成签到,获得积分10
15秒前
张金金发布了新的文献求助10
15秒前
gejun完成签到,获得积分20
15秒前
莫愁发布了新的文献求助10
15秒前
zyw完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139