A neural network predicting the amplitude of the N2pc in individual EEG datasets

N2pc 脑电图 振幅 计算机科学 任意性 人工智能 模式识别(心理学) 物理 心理学 认知 神经科学 语言学 量子力学 哲学 视觉注意
作者
Francesca Marturano,Sabrina Brigadoi,Mattia Doro,Roberto Dell’Acqua,Giovanni Sparacino
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (5): 056044-056044 被引量:2
标识
DOI:10.1088/1741-2552/ac2849
摘要

Objective.The N2pc is a small amplitude transient interhemispheric voltage asymmetry used in cognitive neuroscience to investigate subject's allocation of selective visuo-spatial attention. N2pc is typically estimated by averaging the sweeps of the electroencephalographic (EEG) signal but, in absence of explicit normative indications, the number of sweeps is often based on arbitrariness or personal experience. With the final aim of reducing duration and cost of experimental protocols, here we developed a new approach to reliably predict N2pc amplitude from a minimal EEG dataset.Approach.First, features predictive of N2pc amplitude were identified in the time-frequency domain. Then, an artificial neural network (NN) was trained to predict N2pc mean amplitude at the individual level. By resorting to simulated data, accuracy of the NN was assessed by computing the mean squared error (MSE) and the amplitude discretization error (ADE) and compared to the standard time averaging (TA) technique. The NN was then tested against two real datasets consisting of 14 and 12 subjects, respectively.Main result.In simulated scenarios entailing different number of sweeps (between 10 and 100), the MSE obtained with the proposed method resulted, on average, 1/5 of that obtained with the TA technique. Implementation on real EEG datasets showed that N2pc amplitude could be reliably predicted with as few as 40 EEG sweeps per cell of the experimental design.Significance.The developed approach allows to reduce duration and cost of experiments involving the N2pc, for instance in studies investigating attention deficits in pathological subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美寻桃完成签到,获得积分10
2秒前
LEON完成签到,获得积分10
2秒前
等风的人发布了新的文献求助10
3秒前
小二郎应助归海若风采纳,获得10
4秒前
zxp发布了新的文献求助10
5秒前
hf完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
[刘小婷]发布了新的文献求助30
8秒前
传奇3应助Lin采纳,获得10
9秒前
124完成签到,获得积分10
10秒前
顺利毕业应助啦啦啦采纳,获得10
10秒前
倒立才能看文献完成签到,获得积分10
11秒前
juedai发布了新的文献求助10
11秒前
缥缈的初阳完成签到,获得积分10
12秒前
精明书包发布了新的文献求助10
13秒前
13秒前
14秒前
小小作精怪完成签到,获得积分10
15秒前
15秒前
大模型应助Lyla采纳,获得10
16秒前
梓林发布了新的文献求助10
16秒前
NexusExplorer应助激昂的秀发采纳,获得10
17秒前
21秒前
Zikc发布了新的文献求助10
21秒前
21秒前
D1fficulty完成签到,获得积分0
23秒前
康康完成签到,获得积分10
23秒前
25秒前
潇潇雨歇发布了新的文献求助30
26秒前
科研通AI2S应助黄金正脸采纳,获得10
27秒前
李小飞Li完成签到,获得积分10
27秒前
科研通AI2S应助朱妙彤采纳,获得10
27秒前
可爱的函函应助小杰采纳,获得10
29秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
Jasper应助小小作精怪采纳,获得10
32秒前
tt完成签到,获得积分10
34秒前
ding应助讨厌胡萝卜采纳,获得30
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719