A neural network predicting the amplitude of the N2pc in individual EEG datasets

N2pc 脑电图 振幅 计算机科学 任意性 人工智能 模式识别(心理学) 物理 心理学 认知 神经科学 语言学 哲学 量子力学 视觉注意
作者
Francesca Marturano,Sabrina Brigadoi,Mattia Doro,Roberto Dell’Acqua,Giovanni Sparacino
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (5): 056044-056044 被引量:2
标识
DOI:10.1088/1741-2552/ac2849
摘要

Objective.The N2pc is a small amplitude transient interhemispheric voltage asymmetry used in cognitive neuroscience to investigate subject's allocation of selective visuo-spatial attention. N2pc is typically estimated by averaging the sweeps of the electroencephalographic (EEG) signal but, in absence of explicit normative indications, the number of sweeps is often based on arbitrariness or personal experience. With the final aim of reducing duration and cost of experimental protocols, here we developed a new approach to reliably predict N2pc amplitude from a minimal EEG dataset.Approach.First, features predictive of N2pc amplitude were identified in the time-frequency domain. Then, an artificial neural network (NN) was trained to predict N2pc mean amplitude at the individual level. By resorting to simulated data, accuracy of the NN was assessed by computing the mean squared error (MSE) and the amplitude discretization error (ADE) and compared to the standard time averaging (TA) technique. The NN was then tested against two real datasets consisting of 14 and 12 subjects, respectively.Main result.In simulated scenarios entailing different number of sweeps (between 10 and 100), the MSE obtained with the proposed method resulted, on average, 1/5 of that obtained with the TA technique. Implementation on real EEG datasets showed that N2pc amplitude could be reliably predicted with as few as 40 EEG sweeps per cell of the experimental design.Significance.The developed approach allows to reduce duration and cost of experiments involving the N2pc, for instance in studies investigating attention deficits in pathological subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信富完成签到,获得积分10
刚刚
乖乖完成签到 ,获得积分10
刚刚
刚刚
liudiqiu应助Ll采纳,获得10
刚刚
灬乔关注了科研通微信公众号
1秒前
张菁完成签到,获得积分10
1秒前
菠萝吹雪应助xiachengcs采纳,获得30
2秒前
洋洋发布了新的文献求助10
2秒前
2秒前
3秒前
威武爆米花完成签到,获得积分10
4秒前
在水一方应助zhaowenxian采纳,获得10
5秒前
SS给SS的求助进行了留言
5秒前
6秒前
8秒前
Linden_bd完成签到 ,获得积分10
8秒前
科研通AI5应助yangyangyang采纳,获得10
8秒前
8秒前
漠北完成签到,获得积分10
8秒前
8秒前
Isabel完成签到 ,获得积分10
9秒前
起风了完成签到,获得积分10
9秒前
10秒前
Zjn-完成签到,获得积分10
10秒前
良辰应助lost采纳,获得10
10秒前
靓丽梦桃完成签到,获得积分20
11秒前
11秒前
0306完成签到,获得积分10
11秒前
李创业完成签到,获得积分10
11秒前
庆次完成签到 ,获得积分10
12秒前
ZY发布了新的文献求助10
12秒前
36456657应助跳跃的罡采纳,获得10
12秒前
36456657应助跳跃的罡采纳,获得10
12秒前
pluto应助跳跃的罡采纳,获得10
12秒前
丘比特应助跳跃的罡采纳,获得10
12秒前
12秒前
左手树完成签到,获得积分10
13秒前
13秒前
踏实的似狮完成签到,获得积分10
13秒前
正直画笔完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762