A neural network predicting the amplitude of the N2pc in individual EEG datasets

N2pc 脑电图 振幅 计算机科学 任意性 人工智能 模式识别(心理学) 物理 心理学 认知 神经科学 语言学 量子力学 哲学 视觉注意
作者
Francesca Marturano,Sabrina Brigadoi,Mattia Doro,Roberto Dell’Acqua,Giovanni Sparacino
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (5): 056044-056044 被引量:2
标识
DOI:10.1088/1741-2552/ac2849
摘要

Objective.The N2pc is a small amplitude transient interhemispheric voltage asymmetry used in cognitive neuroscience to investigate subject's allocation of selective visuo-spatial attention. N2pc is typically estimated by averaging the sweeps of the electroencephalographic (EEG) signal but, in absence of explicit normative indications, the number of sweeps is often based on arbitrariness or personal experience. With the final aim of reducing duration and cost of experimental protocols, here we developed a new approach to reliably predict N2pc amplitude from a minimal EEG dataset.Approach.First, features predictive of N2pc amplitude were identified in the time-frequency domain. Then, an artificial neural network (NN) was trained to predict N2pc mean amplitude at the individual level. By resorting to simulated data, accuracy of the NN was assessed by computing the mean squared error (MSE) and the amplitude discretization error (ADE) and compared to the standard time averaging (TA) technique. The NN was then tested against two real datasets consisting of 14 and 12 subjects, respectively.Main result.In simulated scenarios entailing different number of sweeps (between 10 and 100), the MSE obtained with the proposed method resulted, on average, 1/5 of that obtained with the TA technique. Implementation on real EEG datasets showed that N2pc amplitude could be reliably predicted with as few as 40 EEG sweeps per cell of the experimental design.Significance.The developed approach allows to reduce duration and cost of experiments involving the N2pc, for instance in studies investigating attention deficits in pathological subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助胖胖龙采纳,获得10
1秒前
1秒前
万豪完成签到,获得积分10
1秒前
2秒前
Orange应助xxxk采纳,获得10
2秒前
wyw发布了新的文献求助10
3秒前
3秒前
kajimi完成签到,获得积分10
3秒前
3秒前
zhangshaoqi发布了新的文献求助10
4秒前
4秒前
4秒前
kakaC发布了新的文献求助10
5秒前
6秒前
关关完成签到,获得积分10
7秒前
7秒前
柚子发布了新的文献求助10
7秒前
希望天下0贩的0应助nibaba采纳,获得30
7秒前
7秒前
8秒前
善学以致用应助杨觅采纳,获得10
9秒前
华仔应助ckl采纳,获得10
9秒前
dwz发布了新的文献求助10
9秒前
852应助舒心的棒棒糖采纳,获得10
9秒前
9秒前
10秒前
ZHANG完成签到,获得积分10
11秒前
11秒前
为人朴素的小马完成签到,获得积分10
12秒前
学术小张关注了科研通微信公众号
12秒前
12秒前
胖胖龙发布了新的文献求助10
13秒前
13秒前
dwz完成签到,获得积分10
14秒前
ZHANG发布了新的文献求助10
14秒前
格格发布了新的文献求助10
14秒前
14秒前
14秒前
科目三应助蓝色的云采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655