重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A neural network predicting the amplitude of the N2pc in individual EEG datasets

N2pc 脑电图 振幅 计算机科学 任意性 人工智能 模式识别(心理学) 物理 心理学 认知 神经科学 语言学 量子力学 哲学 视觉注意
作者
Francesca Marturano,Sabrina Brigadoi,Mattia Doro,Roberto Dell’Acqua,Giovanni Sparacino
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (5): 056044-056044 被引量:2
标识
DOI:10.1088/1741-2552/ac2849
摘要

Objective.The N2pc is a small amplitude transient interhemispheric voltage asymmetry used in cognitive neuroscience to investigate subject's allocation of selective visuo-spatial attention. N2pc is typically estimated by averaging the sweeps of the electroencephalographic (EEG) signal but, in absence of explicit normative indications, the number of sweeps is often based on arbitrariness or personal experience. With the final aim of reducing duration and cost of experimental protocols, here we developed a new approach to reliably predict N2pc amplitude from a minimal EEG dataset.Approach.First, features predictive of N2pc amplitude were identified in the time-frequency domain. Then, an artificial neural network (NN) was trained to predict N2pc mean amplitude at the individual level. By resorting to simulated data, accuracy of the NN was assessed by computing the mean squared error (MSE) and the amplitude discretization error (ADE) and compared to the standard time averaging (TA) technique. The NN was then tested against two real datasets consisting of 14 and 12 subjects, respectively.Main result.In simulated scenarios entailing different number of sweeps (between 10 and 100), the MSE obtained with the proposed method resulted, on average, 1/5 of that obtained with the TA technique. Implementation on real EEG datasets showed that N2pc amplitude could be reliably predicted with as few as 40 EEG sweeps per cell of the experimental design.Significance.The developed approach allows to reduce duration and cost of experiments involving the N2pc, for instance in studies investigating attention deficits in pathological subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助hml采纳,获得10
刚刚
刚刚
哭泣乌发布了新的文献求助10
刚刚
WendyWen发布了新的文献求助300
刚刚
1秒前
万幸鹿发布了新的文献求助10
1秒前
华仔应助wl采纳,获得10
1秒前
1秒前
爆米花应助LQ采纳,获得10
2秒前
Cme发布了新的文献求助10
2秒前
2秒前
pluto应助jj采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
科研通AI6应助zwLu采纳,获得10
3秒前
3秒前
罗斯发布了新的文献求助10
3秒前
维嘉完成签到,获得积分10
3秒前
3秒前
4秒前
星辰大海应助haha采纳,获得10
4秒前
小万完成签到,获得积分10
5秒前
5秒前
焰色天雷完成签到,获得积分10
5秒前
诚心尔琴完成签到,获得积分10
5秒前
木贝贝发布了新的文献求助10
5秒前
HaojunWang完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
英俊的铭应助刘芮彤采纳,获得10
7秒前
7秒前
李健应助聪慧的从雪采纳,获得10
7秒前
7秒前
彪壮的飞扬完成签到,获得积分10
7秒前
riverflowing发布了新的文献求助10
8秒前
Hudan发布了新的文献求助10
8秒前
赵月月发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467386
求助须知:如何正确求助?哪些是违规求助? 4571127
关于积分的说明 14328830
捐赠科研通 4497699
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452910
关于科研通互助平台的介绍 1427654