Precise Position Intelligent Matching System of Online Recruitment Platform Based on Data Mining Technology

计算机科学 匹配(统计) 互联网 数据科学 探索者 模式(计算机接口) 数据挖掘 职位(财务) 决策树 万维网 人机交互 业务 统计 数学 政治学 法学 财务
作者
Zhen Gao
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2066 (1): 012001-012001 被引量:3
标识
DOI:10.1088/1742-6596/2066/1/012001
摘要

Abstract With the rapid development of Internet technology and computer technology, network applications have been developed more and more, and have penetrated into all walks of life in society. The emergence of the networking of the talent market has made the scale of online recruitment increase, and the amount of data on the Internet has become larger and larger, and online recruitment has become the main channel for corporate recruitment. Therefore, how to use the massive online recruitment data to quickly and accurately find the corresponding information and explore the hidden knowledge mode is a very valuable research topic. Data mining (DM) is a technology for data analysis for large amounts of data. It can discover hidden, hidden, and potentially useful knowledge hidden in the data from the vague, noisy, and random mass data, and build relevant Model, realize prediction, etc. The characteristics of data mining technology (DMT) are very suitable for the analysis of online recruitment information, research on large amounts of information, and find out the knowledge in it for decision support. This article aims to study the accurate job matching system of the online recruitment platform based on DMT. Based on the analysis of the advantages of online recruitment, related DMT and the design principles of the online recruitment platform system, the data collected by Weka DM tools are analyzed. Analyzing and getting useful job positions is just to provide job seekers and corporate-related recruiters with useful job information. The experimental results show that the online recruitment platform system can complete the collection of online recruitment position information, and can realize the DM function, which has good practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zuhangzhao完成签到 ,获得积分10
刚刚
1秒前
才欣宇完成签到 ,获得积分10
1秒前
缓慢雅青完成签到 ,获得积分10
3秒前
核桃道长发布了新的文献求助10
6秒前
logolush完成签到 ,获得积分10
7秒前
胖一达完成签到 ,获得积分10
10秒前
Lisztan完成签到,获得积分10
11秒前
天真的宝马完成签到 ,获得积分10
12秒前
严西完成签到,获得积分10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
叶子完成签到 ,获得积分10
14秒前
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
Noah完成签到 ,获得积分10
18秒前
111111完成签到,获得积分10
19秒前
HY完成签到,获得积分10
20秒前
谨慎鹏涛完成签到 ,获得积分10
20秒前
chrysan完成签到,获得积分10
20秒前
xiaxia42完成签到 ,获得积分10
21秒前
碗在水中央完成签到 ,获得积分0
22秒前
22秒前
雪妮完成签到 ,获得积分10
23秒前
fhz完成签到,获得积分10
29秒前
冷静1等待完成签到 ,获得积分10
29秒前
火星仙人掌完成签到 ,获得积分10
31秒前
刺猬完成签到,获得积分10
31秒前
害羞的盼海完成签到,获得积分10
32秒前
鸣鸣完成签到,获得积分10
33秒前
小花生完成签到 ,获得积分10
34秒前
35秒前
刘刘完成签到,获得积分10
36秒前
格物致知完成签到,获得积分10
36秒前
moci123完成签到 ,获得积分10
38秒前
研友_nqaBGn发布了新的文献求助10
38秒前
cong完成签到 ,获得积分10
39秒前
外向的易蓉完成签到 ,获得积分10
39秒前
调皮的天真完成签到 ,获得积分10
40秒前
平头哥哥完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749979
求助须知:如何正确求助?哪些是违规求助? 3293281
关于积分的说明 10080264
捐赠科研通 3008614
什么是DOI,文献DOI怎么找? 1652307
邀请新用户注册赠送积分活动 787350
科研通“疑难数据库(出版商)”最低求助积分说明 752096