亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blockchain and Federated Edge Learning for Privacy-Preserving Mobile Crowdsensing

拥挤感测 计算机科学 块链 边缘计算 GSM演进的增强数据速率 信息隐私 隐私保护 计算机网络 计算机安全 人工智能
作者
Qin Hu,Zhilin Wang,Minghui Xu,Xiuzhen Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12000-12011 被引量:30
标识
DOI:10.1109/jiot.2021.3128155
摘要

Mobile crowdsensing (MCS) counting on the mobility of massive workers helps the requestor accomplish various sensing tasks with more flexibility and lower cost. However, for the conventional MCS, the large consumption of communication resources for raw data transmission and high requirements on data storage and computing capability hinder potential requestors with limited resources from using MCS. To facilitate the widespread application of MCS, we propose a novel MCS learning framework leveraging on blockchain technology and the new concept of edge intelligence based on federated learning (FL), which involves four major entities, including requestors, blockchain, edge servers, and mobile devices as workers. Even though there exist several studies on blockchain-based MCS and blockchain-based FL, they cannot solve the essential challenges of MCS with respect to accommodating resource-constrained requestors or deal with the privacy concerns brought by the involvement of requestors and workers in the learning process. To fill the gaps, four main procedures, i.e., task publication, data sensing and submission, learning to return final results, and payment settlement and allocation, are designed to address major challenges brought by both internal and external threats, such as malicious edge servers and dishonest requestors. Specifically, a mechanism design-based data submission rule is proposed to guarantee the data privacy of mobile devices being truthfully preserved at edge servers; consortium blockchain-based FL is elaborated to secure the distributed learning process; and a cooperation-enforcing control strategy is devised to elicit full payment from the requestor. Extensive simulations are carried out to evaluate the performance of our designed schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
斯文的难破完成签到 ,获得积分10
8秒前
Rainbow完成签到 ,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
27秒前
传奇3应助体贴花卷采纳,获得30
55秒前
嘒彼小星完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
Min完成签到 ,获得积分10
2分钟前
3分钟前
坦率迎海zzh完成签到,获得积分10
3分钟前
3分钟前
3分钟前
西山雨完成签到,获得积分10
4分钟前
李爱国应助西山雨采纳,获得10
4分钟前
4分钟前
魏白晴完成签到,获得积分10
4分钟前
DChen完成签到 ,获得积分10
4分钟前
TiY完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
体贴花卷发布了新的文献求助10
6分钟前
7分钟前
无心的采萱完成签到,获得积分10
7分钟前
chloe完成签到,获得积分10
7分钟前
李子完成签到,获得积分10
7分钟前
8分钟前
西山雨发布了新的文献求助10
8分钟前
8分钟前
Sunny完成签到 ,获得积分20
9分钟前
9分钟前
脑洞疼应助zzz采纳,获得10
10分钟前
10分钟前
11分钟前
天空之城完成签到,获得积分10
11分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314398
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531221
捐赠科研通 2622376
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881