Urban Functional Zone Mapping With a Bibranch Neural Network via Fusing Remote Sensing and Social Sensing Data

计算机科学 众包 过程(计算) 人工智能 人工神经网络 领域(数学分析) 深度学习 样品(材料) 数据挖掘 遥感 比例(比率) 模式识别(心理学) 机器学习 地理 地图学 万维网 操作系统 数学分析 化学 色谱法 数学
作者
Runyu Fan,Ruyi Feng,Wei Han,Lizhe Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 11737-11749 被引量:11
标识
DOI:10.1109/jstars.2021.3127246
摘要

Urban functional zones (UFZs are the urban spaces divided by various functional activities and are the basic units of daily human activities. UFZ mapping, which identifies the UFZ categories in different spatial areas of a city, is of considerable significance to urban management, design, and sustainable development. Various deep learning-based (DL-based methods, which achieved remarkable results in an end-to-end supervised process, were proposed for UFZ mapping. However, the excellent performance of DL-based models relies heavily on a large number of well-annotated samples, which is impossible to obtain in practical UFZ mapping scenarios. Obtaining these well-annotated samples requires a lot of manual costs, which greatly limits the outcome of these methods in practical UFZ mapping tasks. In this paper, we proposed a UFZ mapping method using OpenStreetMap-based (OSM-based sample generation and the bi-branch neural network (BibNet . By adopting the idea of OSM-based sample generation, the proposed method utilized large-scale crowdsourcing labeled data (source domain in OSM to generate a UFZ dataset (target domain from OSM using remote sensing and social sensing data. Considering the inconsistent response of UFZ to various data observations, it is difficult to fully reflect the characteristics of UFZs using only remote sensing or social sensing data. We further proposed the BibNet, which utilizes two different deep neural network (DNN branches to comprehensively harness remote sensing images and social sensing data to map the UFZ. Experiments were conducted in Shenzhen City. The proposed method achieved an overall accuracy (OA of 94.46\% in the testing set of Shenzhen City
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
白白白发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助ZUOWEI采纳,获得10
3秒前
3秒前
4秒前
仁爱的雁芙完成签到,获得积分10
5秒前
简单一兰发布了新的文献求助10
5秒前
WDD发布了新的文献求助20
7秒前
8秒前
8秒前
huangnvshi发布了新的文献求助10
8秒前
634301059完成签到 ,获得积分10
10秒前
尊敬淇发布了新的文献求助10
10秒前
11秒前
生活不是电影完成签到,获得积分10
11秒前
12秒前
LZJ发布了新的文献求助10
13秒前
ste发布了新的文献求助10
13秒前
传奇3应助鲤鱼奇遇采纳,获得10
15秒前
扬渚完成签到,获得积分10
15秒前
简单一兰完成签到,获得积分20
15秒前
15秒前
15秒前
Faith发布了新的文献求助10
16秒前
16秒前
123Y完成签到,获得积分10
16秒前
白白白完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助梅残风暖采纳,获得10
18秒前
18秒前
19秒前
huangnvshi完成签到,获得积分10
19秒前
19秒前
zhubin完成签到,获得积分10
19秒前
20秒前
Hoo发布了新的文献求助10
20秒前
21秒前
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237