Urban Functional Zone Mapping With a Bibranch Neural Network via Fusing Remote Sensing and Social Sensing Data

计算机科学 众包 过程(计算) 人工智能 人工神经网络 领域(数学分析) 深度学习 样品(材料) 数据挖掘 遥感 比例(比率) 模式识别(心理学) 机器学习 地理 地图学 万维网 操作系统 数学分析 化学 色谱法 数学
作者
Runyu Fan,Ruyi Feng,Wei Han,Lizhe Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 11737-11749 被引量:11
标识
DOI:10.1109/jstars.2021.3127246
摘要

Urban functional zones (UFZs are the urban spaces divided by various functional activities and are the basic units of daily human activities. UFZ mapping, which identifies the UFZ categories in different spatial areas of a city, is of considerable significance to urban management, design, and sustainable development. Various deep learning-based (DL-based methods, which achieved remarkable results in an end-to-end supervised process, were proposed for UFZ mapping. However, the excellent performance of DL-based models relies heavily on a large number of well-annotated samples, which is impossible to obtain in practical UFZ mapping scenarios. Obtaining these well-annotated samples requires a lot of manual costs, which greatly limits the outcome of these methods in practical UFZ mapping tasks. In this paper, we proposed a UFZ mapping method using OpenStreetMap-based (OSM-based sample generation and the bi-branch neural network (BibNet . By adopting the idea of OSM-based sample generation, the proposed method utilized large-scale crowdsourcing labeled data (source domain in OSM to generate a UFZ dataset (target domain from OSM using remote sensing and social sensing data. Considering the inconsistent response of UFZ to various data observations, it is difficult to fully reflect the characteristics of UFZs using only remote sensing or social sensing data. We further proposed the BibNet, which utilizes two different deep neural network (DNN branches to comprehensively harness remote sensing images and social sensing data to map the UFZ. Experiments were conducted in Shenzhen City. The proposed method achieved an overall accuracy (OA of 94.46\% in the testing set of Shenzhen City
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
打打应助习习采纳,获得10
1秒前
bluer发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI5应助无悔呀采纳,获得10
3秒前
毛毛虫完成签到,获得积分10
3秒前
快乐小文完成签到,获得积分10
3秒前
Nooooo发布了新的文献求助10
4秒前
4秒前
贰鸟应助木之以南采纳,获得10
4秒前
无不破哉完成签到,获得积分20
4秒前
Dai WJ发布了新的文献求助10
5秒前
黄大师完成签到 ,获得积分10
5秒前
愤怒的河虾完成签到,获得积分10
5秒前
所所应助XIXI采纳,获得10
5秒前
麻麻发布了新的文献求助10
6秒前
经法发布了新的文献求助10
6秒前
MailkMonk完成签到,获得积分20
6秒前
cici完成签到,获得积分10
7秒前
快乐小文发布了新的文献求助30
7秒前
惜寒完成签到 ,获得积分10
7秒前
7秒前
Grayball应助无奈梦岚采纳,获得10
7秒前
此生不换完成签到 ,获得积分10
8秒前
寻舟者完成签到,获得积分10
9秒前
9秒前
9秒前
橘子屿布丁完成签到,获得积分10
10秒前
10秒前
Zhy完成签到,获得积分10
11秒前
bzy发布了新的文献求助10
11秒前
11秒前
风趣秋白完成签到,获得积分10
11秒前
情怀应助tanmeng77采纳,获得10
11秒前
若空完成签到 ,获得积分10
12秒前
典雅又夏发布了新的文献求助10
12秒前
XIXI完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678