Urban Functional Zone Mapping With a Bibranch Neural Network via Fusing Remote Sensing and Social Sensing Data

计算机科学 众包 过程(计算) 人工智能 人工神经网络 领域(数学分析) 深度学习 样品(材料) 数据挖掘 遥感 比例(比率) 模式识别(心理学) 机器学习 地理 地图学 万维网 操作系统 数学分析 化学 色谱法 数学
作者
Runyu Fan,Ruyi Feng,Wei Han,Lizhe Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 11737-11749 被引量:11
标识
DOI:10.1109/jstars.2021.3127246
摘要

Urban functional zones (UFZs are the urban spaces divided by various functional activities and are the basic units of daily human activities. UFZ mapping, which identifies the UFZ categories in different spatial areas of a city, is of considerable significance to urban management, design, and sustainable development. Various deep learning-based (DL-based methods, which achieved remarkable results in an end-to-end supervised process, were proposed for UFZ mapping. However, the excellent performance of DL-based models relies heavily on a large number of well-annotated samples, which is impossible to obtain in practical UFZ mapping scenarios. Obtaining these well-annotated samples requires a lot of manual costs, which greatly limits the outcome of these methods in practical UFZ mapping tasks. In this paper, we proposed a UFZ mapping method using OpenStreetMap-based (OSM-based sample generation and the bi-branch neural network (BibNet . By adopting the idea of OSM-based sample generation, the proposed method utilized large-scale crowdsourcing labeled data (source domain in OSM to generate a UFZ dataset (target domain from OSM using remote sensing and social sensing data. Considering the inconsistent response of UFZ to various data observations, it is difficult to fully reflect the characteristics of UFZs using only remote sensing or social sensing data. We further proposed the BibNet, which utilizes two different deep neural network (DNN branches to comprehensively harness remote sensing images and social sensing data to map the UFZ. Experiments were conducted in Shenzhen City. The proposed method achieved an overall accuracy (OA of 94.46\% in the testing set of Shenzhen City
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责金毛完成签到,获得积分10
1秒前
1秒前
神勇的木棍完成签到,获得积分20
1秒前
权秋尽完成签到,获得积分10
2秒前
2秒前
lemon完成签到,获得积分10
2秒前
h7nho发布了新的文献求助10
3秒前
直率以松完成签到,获得积分20
3秒前
zhang完成签到,获得积分10
4秒前
情怀应助Wayi采纳,获得10
5秒前
xzn1123给twotwomi的求助进行了留言
7秒前
量子星尘发布了新的文献求助10
9秒前
宁静完成签到,获得积分10
9秒前
9秒前
9秒前
h7nho完成签到,获得积分10
10秒前
SUKI完成签到,获得积分10
10秒前
JF完成签到,获得积分10
10秒前
小太阳完成签到,获得积分10
11秒前
1111完成签到,获得积分10
11秒前
秦磊完成签到,获得积分10
11秒前
敏感的楷瑞完成签到,获得积分10
12秒前
是三石啊完成签到 ,获得积分10
12秒前
牧星河完成签到,获得积分10
12秒前
l玖完成签到,获得积分0
13秒前
善良书蕾完成签到,获得积分10
13秒前
确幸完成签到,获得积分10
14秒前
07734完成签到,获得积分10
14秒前
黎明完成签到,获得积分10
15秒前
FCL完成签到,获得积分10
16秒前
羽生发布了新的文献求助10
17秒前
17秒前
记录吐吐完成签到 ,获得积分10
18秒前
糖炒栗子完成签到,获得积分10
19秒前
在水一方完成签到,获得积分0
19秒前
迅速千愁完成签到 ,获得积分10
19秒前
花开hhhhhhh发布了新的文献求助10
21秒前
白兰鸽完成签到,获得积分10
21秒前
风中的怜阳完成签到,获得积分10
21秒前
健壮的涑完成签到 ,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027