Renal tumors segmentation in abdomen CT Images using 3D-CNN and ConvLSTM

分割 计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 放射科 医学
作者
Kang Li,Ziqi Zhou,Jianjun Huang,Wenzhong Han
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:72: 103334-103334 被引量:26
标识
DOI:10.1016/j.bspc.2021.103334
摘要

Renal tumor is one of the common tumors with high incidence, and accurate segmentation of renal tumors is helpful for preoperative evaluation. Computed Tomography (CT) plays an important role in the treatment of renal tumors and accurate segmentation of tumors in CT images may provide critical information for surgery. In this paper, a segmentation approach based on deep learning with limited computation cost is proposed to improve the segmentation accuracy for kidneys and renal tumors. Firstly, a pre-trained restruction network is presented to alleviate small samples problems, which utilizes abdominal CT data to transfer network model effectively; Then, prior contour-assisted channel is introduced in two-dimensional network to segment the region of interest which contains kidneys and renal tumors and act as the input of the subsequente fine segmentation network; Finally, convolutional long short-term memory (ConvLSTM) is employed to extract spatial correlation information between slices and combined with a three-dimensional convolutional neural networks for fine segmentation. Several experiments on the 2019 renal tumor segmentation challenge(Kits19) dataset are designed to evaluate the performance of the proposed method, and the mean segmentation accuracy for kidneys and renal tumors are 96.39% and 78.91% for cross validation tests, which outperforms the other neural network algorithms, including 3D Res-Unet with 95.4% and 72.35%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
QIUJIEYANG发布了新的文献求助10
1秒前
迷路翠绿完成签到,获得积分10
1秒前
1秒前
陈醋塔塔完成签到,获得积分0
1秒前
牧愚完成签到,获得积分10
1秒前
李爱国应助Billie采纳,获得30
2秒前
2秒前
隐形曼青应助朽木采纳,获得10
2秒前
123657发布了新的文献求助10
2秒前
Hello应助静静在学呢采纳,获得10
3秒前
赘婿应助生动的小白菜采纳,获得10
3秒前
3秒前
Legend完成签到,获得积分20
4秒前
4秒前
QL完成签到 ,获得积分10
5秒前
嘻嘻发布了新的文献求助10
5秒前
Lei发布了新的文献求助10
5秒前
6秒前
SYLH应助ccc采纳,获得30
6秒前
啊薇儿发布了新的文献求助10
6秒前
小鱼发布了新的文献求助10
6秒前
yxr0315完成签到,获得积分10
7秒前
7秒前
123关闭了123文献求助
8秒前
8秒前
8秒前
9秒前
偶吼吼完成签到,获得积分10
9秒前
zanilia完成签到,获得积分10
9秒前
fengttaotao12发布了新的文献求助30
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
smottom应助科研通管家采纳,获得20
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033