Renal tumors segmentation in abdomen CT Images using 3D-CNN and ConvLSTM

分割 计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 放射科 医学
作者
Kang Li,Ziqi Zhou,Jianjun Huang,Wenzhong Han
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103334-103334 被引量:31
标识
DOI:10.1016/j.bspc.2021.103334
摘要

Renal tumor is one of the common tumors with high incidence, and accurate segmentation of renal tumors is helpful for preoperative evaluation. Computed Tomography (CT) plays an important role in the treatment of renal tumors and accurate segmentation of tumors in CT images may provide critical information for surgery. In this paper, a segmentation approach based on deep learning with limited computation cost is proposed to improve the segmentation accuracy for kidneys and renal tumors. Firstly, a pre-trained restruction network is presented to alleviate small samples problems, which utilizes abdominal CT data to transfer network model effectively; Then, prior contour-assisted channel is introduced in two-dimensional network to segment the region of interest which contains kidneys and renal tumors and act as the input of the subsequente fine segmentation network; Finally, convolutional long short-term memory (ConvLSTM) is employed to extract spatial correlation information between slices and combined with a three-dimensional convolutional neural networks for fine segmentation. Several experiments on the 2019 renal tumor segmentation challenge(Kits19) dataset are designed to evaluate the performance of the proposed method, and the mean segmentation accuracy for kidneys and renal tumors are 96.39% and 78.91% for cross validation tests, which outperforms the other neural network algorithms, including 3D Res-Unet with 95.4% and 72.35%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
QiJiLuLu完成签到,获得积分10
2秒前
无花果应助ATOM采纳,获得10
2秒前
Werner完成签到 ,获得积分10
2秒前
2秒前
3秒前
乐乐完成签到 ,获得积分10
3秒前
5秒前
初初见你发布了新的文献求助10
5秒前
Rui_Rui发布了新的文献求助10
6秒前
合适清完成签到,获得积分10
7秒前
自然幻竹完成签到,获得积分10
7秒前
渣渣凡完成签到,获得积分10
8秒前
automan发布了新的文献求助10
8秒前
9秒前
yang完成签到,获得积分10
10秒前
桑榆发布了新的文献求助10
11秒前
NexusExplorer应助LPP采纳,获得10
13秒前
香蕉觅云应助chiweiyoung采纳,获得10
13秒前
14秒前
15秒前
16秒前
16秒前
传奇3应助fredrica采纳,获得10
17秒前
橙橙完成签到 ,获得积分10
17秒前
jjyy应助zyl采纳,获得10
18秒前
halo发布了新的文献求助10
20秒前
工作简历发布了新的文献求助10
20秒前
哇咔哩啦完成签到,获得积分20
21秒前
阳光完成签到,获得积分10
21秒前
Lucas应助glycine采纳,获得10
23秒前
26秒前
28秒前
28秒前
ZZ完成签到,获得积分10
29秒前
tana98906发布了新的文献求助10
30秒前
31秒前
31秒前
32秒前
memes发布了新的文献求助10
32秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848