Renal tumors segmentation in abdomen CT Images using 3D-CNN and ConvLSTM

分割 计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 放射科 医学
作者
Kang Li,Ziqi Zhou,Jianjun Huang,Wenzhong Han
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103334-103334 被引量:31
标识
DOI:10.1016/j.bspc.2021.103334
摘要

Renal tumor is one of the common tumors with high incidence, and accurate segmentation of renal tumors is helpful for preoperative evaluation. Computed Tomography (CT) plays an important role in the treatment of renal tumors and accurate segmentation of tumors in CT images may provide critical information for surgery. In this paper, a segmentation approach based on deep learning with limited computation cost is proposed to improve the segmentation accuracy for kidneys and renal tumors. Firstly, a pre-trained restruction network is presented to alleviate small samples problems, which utilizes abdominal CT data to transfer network model effectively; Then, prior contour-assisted channel is introduced in two-dimensional network to segment the region of interest which contains kidneys and renal tumors and act as the input of the subsequente fine segmentation network; Finally, convolutional long short-term memory (ConvLSTM) is employed to extract spatial correlation information between slices and combined with a three-dimensional convolutional neural networks for fine segmentation. Several experiments on the 2019 renal tumor segmentation challenge(Kits19) dataset are designed to evaluate the performance of the proposed method, and the mean segmentation accuracy for kidneys and renal tumors are 96.39% and 78.91% for cross validation tests, which outperforms the other neural network algorithms, including 3D Res-Unet with 95.4% and 72.35%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助ty采纳,获得10
刚刚
苏鑫完成签到,获得积分10
刚刚
刚刚
小蘑菇应助研友_ZbP41L采纳,获得10
刚刚
Lucas应助ze采纳,获得10
1秒前
yznfly完成签到,获得积分0
1秒前
量子星尘发布了新的文献求助10
1秒前
第七个南瓜完成签到,获得积分10
1秒前
47完成签到 ,获得积分10
1秒前
星光完成签到,获得积分10
1秒前
华北走地鸡完成签到,获得积分10
1秒前
yehuitao完成签到,获得积分10
2秒前
醉意拥桃枝完成签到 ,获得积分10
3秒前
柳沧海完成签到,获得积分0
3秒前
3秒前
快乐的猪完成签到,获得积分10
4秒前
orixero应助云禾采纳,获得10
4秒前
wonderbgt完成签到,获得积分0
4秒前
SUKAILIMAI完成签到,获得积分10
5秒前
5秒前
####发布了新的文献求助10
5秒前
Ava应助闪闪的灵寒采纳,获得10
6秒前
6秒前
请输入昵称完成签到 ,获得积分10
6秒前
deer完成签到,获得积分10
7秒前
kingwill完成签到,获得积分0
8秒前
lifeng完成签到,获得积分10
8秒前
qian完成签到,获得积分10
8秒前
我不是笨蛋完成签到,获得积分10
8秒前
zybbb完成签到 ,获得积分10
9秒前
9秒前
信江书院发布了新的文献求助10
9秒前
ooooodai完成签到,获得积分10
9秒前
lip应助朴实迎梅采纳,获得10
10秒前
JamesPei应助无奈的书琴采纳,获得10
10秒前
大地完成签到,获得积分10
10秒前
霍霍完成签到,获得积分10
10秒前
佳银完成签到,获得积分10
10秒前
飘逸映冬完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651723
求助须知:如何正确求助?哪些是违规求助? 4785782
关于积分的说明 15055712
捐赠科研通 4810402
什么是DOI,文献DOI怎么找? 2573132
邀请新用户注册赠送积分活动 1529020
关于科研通互助平台的介绍 1488014