Improved RRT-Connect Based Path Planning Algorithm for Mobile Robots

计算机科学 随机树 移动机器人 任意角度路径规划 运动规划 路径(计算) 机器人 算法 人工智能 程序设计语言
作者
Jiagui Chen,Yun Zhao,Xing Xu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 145988-145999 被引量:16
标识
DOI:10.1109/access.2021.3123622
摘要

Path planning plays a key role in the application of mobile robots and it is an important way to achieve intelligent mobile robots. Traditional path planning algorithms need to model environmental obstacles in a deterministic space, which is complex and easily trapped in local minimal. The sampling-based path planning algorithm performs collision detection on the environment and it is able to quickly obtain a feasible path. In order to solve the problem of inefficient search of the sampling-based Rapidly Expanding Random Tree (RRT-Connect) path planning algorithm, an improved RRT-Connect mobile robot path planning algorithm (IRRT-Connect) is proposed in this paper. In order to continue to speed up the search of the algorithm, a simple and efficient third node is generated in the configuration space, allowing the algorithm to be greedily extended with a quadruple tree in the proposed algorithm. Further, the method of adding guidance is proposed to make the algorithm have the characteristics of biasing towards the target point when expanding, which improves the exploration efficiency of the algorithm. In order to verify the effectiveness of the proposed algorithm, this paper compares the execution performance of the four algorithms in six environments of different complexity. The results of the simulation experiments show that the proposed improved algorithm outperforms the RRT, RRT-Connect and RRT* algorithms in terms of the number of algorithm iterations, planning time and final path length in different environments. In addition, the improved algorithm was ported to the ROS mobile robot for experiments with real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助俭朴夜雪采纳,获得10
刚刚
刚刚
頑皮燕姿完成签到,获得积分10
刚刚
刚刚
丁德乐可发布了新的文献求助10
1秒前
Minkslion完成签到,获得积分10
1秒前
於松完成签到,获得积分10
1秒前
1秒前
yyyy发布了新的文献求助10
2秒前
稳重无剑完成签到,获得积分10
3秒前
wuha完成签到,获得积分10
3秒前
3秒前
欢喜从霜完成签到,获得积分10
4秒前
Orange应助LiShin采纳,获得10
4秒前
4秒前
欣慰友梅完成签到,获得积分10
4秒前
5秒前
llllllll发布了新的文献求助10
5秒前
5秒前
5秒前
CC完成签到,获得积分10
5秒前
wwuu发布了新的文献求助10
6秒前
shenyanlei发布了新的文献求助10
6秒前
一汁蟹发布了新的文献求助20
7秒前
大个应助绿麦盲区采纳,获得10
7秒前
雨齐完成签到,获得积分10
7秒前
茶艺如何发布了新的文献求助10
7秒前
7秒前
kk完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
yyyy完成签到,获得积分10
9秒前
好好学习天天向上完成签到,获得积分10
9秒前
欣慰友梅发布了新的文献求助10
9秒前
9秒前
10秒前
Akim应助易伊澤采纳,获得10
10秒前
格局太小完成签到,获得积分10
10秒前
10秒前
尔云完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762