DT-MIL: Deformable Transformer for Multi-instance Learning on Histopathological Image

联营 嵌入 特征学习 变压器 计算机科学 模式识别(心理学) 人工智能 特征向量 计算机视觉 机器学习 电压 物理 量子力学
作者
Hang Li,Fan Yang,Yu Zhao,Xiaohan Xing,Jun Zhang,Mingxuan Gao,Junzhou Huang,Liansheng Wang,Jianhua Yao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 206-216 被引量:44
标识
DOI:10.1007/978-3-030-87237-3_20
摘要

Learning informative representations is crucial for classification and prediction tasks on histopathological images. Due to the huge image size, whole-slide histopathological image analysis is normally addressed with multi-instance learning (MIL) scheme. However, the weakly supervised nature of MIL leads to the challenge of learning an effective whole-slide-level representation. To tackle this issue, we present a novel embedded-space MIL model based on deformable transformer (DT) architecture and convolutional layers, which is termed DT-MIL. The DT architecture enables our MIL model to update each instance feature by globally aggregating instance features in a bag simultaneously and encoding the position context information of instances during bag representation learning. Compared with other state-of-the-art MIL models, our model has the following advantages: (1) generating the bag representation in a fully trainable way, (2) representing the bag with a high-level and nonlinear combination of all instances instead of fixed pooling-based methods (e.g. max pooling and average pooling) or simply attention-based linear aggregation, and (3) encoding the position relationship and context information during bag embedding phase. Besides our proposed DT-MIL, we also develop other possible transformer-based MILs for comparison. Extensive experiments show that our DT-MIL outperforms the state-of-the-art methods and other transformer-based MIL architectures in histopathological image classification and prediction tasks. An open-source implementation of our approach can be found at https://github.com/yfzon/DT-MIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宇文听南发布了新的文献求助10
刚刚
嘉心糖应助ziyou采纳,获得20
刚刚
耶耶发布了新的文献求助10
刚刚
1秒前
捞鱼完成签到,获得积分10
1秒前
1秒前
张益萌应助l玖采纳,获得30
2秒前
jiujiudejian完成签到,获得积分10
2秒前
英俊的铭应助小红采纳,获得10
3秒前
尉迟如音发布了新的文献求助10
3秒前
3秒前
Corey完成签到 ,获得积分10
3秒前
zzzz完成签到 ,获得积分10
3秒前
柴柴完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助Chenbiao采纳,获得10
4秒前
4秒前
36456657应助linlin采纳,获得10
5秒前
小杨发布了新的文献求助10
7秒前
7秒前
7秒前
NIUBEN发布了新的文献求助10
7秒前
善学以致用应助煜琪采纳,获得10
8秒前
细腻代真发布了新的文献求助10
8秒前
8秒前
8秒前
yatou5651应助大意的梦山采纳,获得30
11秒前
张萌发布了新的文献求助10
11秒前
球球发布了新的文献求助10
12秒前
khjia完成签到,获得积分10
12秒前
12秒前
ziyou完成签到,获得积分10
12秒前
13秒前
14秒前
vvv完成签到 ,获得积分10
14秒前
guo发布了新的文献求助10
14秒前
123456完成签到,获得积分20
15秒前
在水一方应助小杨采纳,获得10
15秒前
婷妞儿完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308738
求助须知:如何正确求助?哪些是违规求助? 2942021
关于积分的说明 8507135
捐赠科研通 2617034
什么是DOI,文献DOI怎么找? 1429940
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649160