亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

P09.01 Radiomics-based machine learning approach in differentiation between vestibular schwannoma and meningioma in the cerebellopontine angle

脑膜瘤 线性判别分析 神经鞘瘤 医学 人工智能 桥小脑角 随机森林 机器学习 决策树 判别式 Lasso(编程语言) 磁共振成像 支持向量机 放射科 对比度(视觉) 计算机科学 万维网
作者
Yi Zhang,C Chen,Jianguo Xu
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:23 (Supplement_2): ii26-ii26 被引量:1
标识
DOI:10.1093/neuonc/noab180.090
摘要

Abstract BACKGROUND Vestibular schwannoma (VS) and meningioma are the most two common tumors in the cerebellopontine angle (CPA). Accurate preoperative differentiation of the two lesions is important due to their different surgical approaches and outcomes for the preservation of hearing and facial nerve function. Magnetic resonance (MR) scan is commonly performed to preoperatively evaluate CPA tumors and to differentiate VS from meningioma in clinical routine. However, in some cases, overlaps of conventional MR imaging patterns between the two lesions could make preoperative diagnosis challenging. The purpose of this study is to investigate the ability of radiomics, a novel method providing objective and quantitative information beyond visual assessment, in differentiation between VS and meningioma located at CPA using machine learning technology. MATERIAL AND METHODS This retrospective study enrolled eligible patients who were diagnosed with VS (N = 50) or meningioma (N = 41) in the CPA. A set of mineable three-dimensional radiomic parameters were extracted from preoperative contrast-enhanced T1-weighted images. Optimal features were selected first with three selection methods including distance correlation, least absolute shrinkage and selection operator (LASSO) and gradient boosting decision tree (GBDT). Then three machine learning classification algorithms, namely linear discriminant analysis (LDA), support vector machine (SVM) and random forest were employed to build discriminative models. Area under the curve (AUC), accuracy, sensitivity and specificity were calculated to assess the performance of each model. RESULTS Nine models were established with different combinations of selection methods and machine learning classifiers. Three classifiers with the suitable selection method all represented feasible ability in differentiation with AUC more than 0.86 in the validation set, and LDA-based models seemed to show better diagnostic performance than those based on the other two classifiers. The combination of LASSO and LDA classifier was found to show the highest AUC of 0.942 in the validation set. CONCLUSION Radiomics-based models via machine learning approaches could potentially be utilized to assist in preoperative differentiation between VS and meningioma in the CPA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助有人采纳,获得10
6秒前
有人重新开启了123文献应助
14秒前
金钰贝儿完成签到,获得积分10
20秒前
MishimaErika发布了新的文献求助30
24秒前
41秒前
MishimaErika发布了新的文献求助10
41秒前
44秒前
qz发布了新的文献求助10
47秒前
俏皮元珊完成签到 ,获得积分10
48秒前
58秒前
CCC完成签到 ,获得积分10
1分钟前
yangon发布了新的文献求助10
1分钟前
Lucas应助有人采纳,获得10
1分钟前
有人重新开启了123文献应助
1分钟前
MishimaErika完成签到,获得积分10
1分钟前
1分钟前
MishimaErika发布了新的文献求助10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得30
1分钟前
yangon完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
诺坎普的宠儿完成签到,获得积分10
1分钟前
evanevanus完成签到,获得积分10
1分钟前
2分钟前
晨阳完成签到,获得积分10
2分钟前
Leon应助有人采纳,获得20
2分钟前
慕青应助诺坎普的宠儿采纳,获得10
2分钟前
有人重新开启了123文献应助
2分钟前
独特的初彤完成签到 ,获得积分10
2分钟前
流星完成签到,获得积分10
3分钟前
3分钟前
李健的小迷弟应助洛克采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
铭铭发布了新的文献求助10
3分钟前
铭铭完成签到,获得积分10
3分钟前
Benhnhk21发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466817
求助须知:如何正确求助?哪些是违规求助? 3059596
关于积分的说明 9067206
捐赠科研通 2750080
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896