CT-based radiomics signatures can predict the tumor response of non-small cell lung cancer patients treated with first-line chemotherapy and targeted therapy

医学 无线电技术 介入放射学 肺癌 神经组阅片室 肿瘤科 放射科 内科学 靶向治疗 化疗 癌症 神经学 精神科
作者
Fengchang Yang,Jiayi Zhang,Zhou Liu,Wei Xia,Rui Zhang,Haifeng Wei,Jinxue Feng,Xingyu Zhao,Junming Jian,Xin Gao,Shuanghu Yuan
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 1538-1547 被引量:26
标识
DOI:10.1007/s00330-021-08277-y
摘要

The goal of this study was to evaluate the effectiveness of radiomics signatures on pre-treatment computed tomography (CT) images of lungs to predict the tumor responses of non-small cell lung cancer (NSCLC) patients treated with first-line chemotherapy, targeted therapy, or a combination of both. This retrospective study included 322 NSCLC patients who were treated with first-line chemotherapy, targeted therapy, or a combination of both. Of these patients, 224 were randomly assigned to a cohort to help develop the radiomics signature. A total of 1946 radiomics features were obtained from each patient’s CT scan. The top-ranked features were selected by the Minimum Redundancy Maximum Relevance (MRMR) feature-ranking method and used to build a lightweight radiomics signature with the Random Forest (RF) classifier. The independent predictive (IP) features (AUC > 0.6, p value < 0.05) were further identified from the top-ranked features and used to build a refined radiomics signature by the RF classifier. Its prediction performance was tested on the validation cohort, which consisted of the remaining 98 patients. The initial lightweight radiomics signature constructed from 15 top-ranked features had an AUC of 0.721 (95% CI, 0.619–0.823). After six IP features were further identified and a refined radiomics signature was built, it had an AUC of 0.746 (95% CI, 0.646–0.846). Radiomics signatures based on pre-treatment CT scans can accurately predict tumor response in NSCLC patients after first-line chemotherapy or targeted therapy treatments. Radiomics features could be used as promising prognostic imaging biomarkers in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
温暖的颜演完成签到 ,获得积分20
2秒前
meng完成签到,获得积分10
4秒前
云_123发布了新的文献求助10
4秒前
cc完成签到 ,获得积分10
4秒前
领导范儿应助噼里啪啦采纳,获得10
4秒前
Misty发布了新的文献求助10
5秒前
5秒前
wanci应助annabel采纳,获得200
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
pipipiya完成签到,获得积分10
11秒前
11秒前
zty发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
科研通AI2S应助cugwzr采纳,获得10
12秒前
12秒前
大意的面包完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825