CT-based radiomics signatures can predict the tumor response of non-small cell lung cancer patients treated with first-line chemotherapy and targeted therapy

医学 无线电技术 介入放射学 肺癌 神经组阅片室 肿瘤科 放射科 内科学 靶向治疗 化疗 癌症 神经学 精神科
作者
Fengchang Yang,Jiayi Zhang,Zhou Liu,Wei Xia,Rui Zhang,Haifeng Wei,Jinxue Feng,Xingyu Zhao,Junming Jian,Xin Gao,Shuanghu Yuan
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 1538-1547 被引量:30
标识
DOI:10.1007/s00330-021-08277-y
摘要

The goal of this study was to evaluate the effectiveness of radiomics signatures on pre-treatment computed tomography (CT) images of lungs to predict the tumor responses of non-small cell lung cancer (NSCLC) patients treated with first-line chemotherapy, targeted therapy, or a combination of both. This retrospective study included 322 NSCLC patients who were treated with first-line chemotherapy, targeted therapy, or a combination of both. Of these patients, 224 were randomly assigned to a cohort to help develop the radiomics signature. A total of 1946 radiomics features were obtained from each patient’s CT scan. The top-ranked features were selected by the Minimum Redundancy Maximum Relevance (MRMR) feature-ranking method and used to build a lightweight radiomics signature with the Random Forest (RF) classifier. The independent predictive (IP) features (AUC > 0.6, p value < 0.05) were further identified from the top-ranked features and used to build a refined radiomics signature by the RF classifier. Its prediction performance was tested on the validation cohort, which consisted of the remaining 98 patients. The initial lightweight radiomics signature constructed from 15 top-ranked features had an AUC of 0.721 (95% CI, 0.619–0.823). After six IP features were further identified and a refined radiomics signature was built, it had an AUC of 0.746 (95% CI, 0.646–0.846). Radiomics signatures based on pre-treatment CT scans can accurately predict tumor response in NSCLC patients after first-line chemotherapy or targeted therapy treatments. Radiomics features could be used as promising prognostic imaging biomarkers in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助喜悦香萱采纳,获得10
刚刚
AT发布了新的文献求助10
刚刚
1秒前
迷你的岩发布了新的文献求助10
2秒前
keyan_zhou应助淡淡的雪采纳,获得20
2秒前
Hello应助大萝贝采纳,获得10
2秒前
3秒前
希望天下0贩的0应助jwxstc采纳,获得10
3秒前
帝金无痕完成签到,获得积分10
4秒前
明天要摆烂完成签到,获得积分10
4秒前
白日梦想家完成签到,获得积分10
5秒前
铭汐完成签到 ,获得积分10
5秒前
6秒前
科目三应助有魅力访曼采纳,获得10
6秒前
英姑应助感性的靖仇采纳,获得10
6秒前
6秒前
一念春风发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
无语的麦片完成签到,获得积分20
11秒前
猩心完成签到,获得积分10
12秒前
12秒前
小苏苏完成签到,获得积分10
12秒前
巴顿将军发布了新的文献求助10
13秒前
彬彬有李发布了新的文献求助10
13秒前
angelinazh完成签到,获得积分0
13秒前
r93527005完成签到,获得积分10
14秒前
15秒前
科研通AI5应助懒羊羊采纳,获得10
15秒前
玛卡巴卡发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
优美的海秋完成签到,获得积分10
18秒前
18秒前
TY完成签到,获得积分10
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660105
求助须知:如何正确求助?哪些是违规求助? 3221425
关于积分的说明 9740535
捐赠科研通 2930781
什么是DOI,文献DOI怎么找? 1604673
邀请新用户注册赠送积分活动 757396
科研通“疑难数据库(出版商)”最低求助积分说明 734406