CT-based radiomics signatures can predict the tumor response of non-small cell lung cancer patients treated with first-line chemotherapy and targeted therapy

医学 无线电技术 介入放射学 肺癌 神经组阅片室 肿瘤科 放射科 内科学 靶向治疗 化疗 癌症 神经学 精神科
作者
Fengchang Yang,Jiayi Zhang,Zhou Liu,Wei Xia,Rui Zhang,Haifeng Wei,Jinxue Feng,Xingyu Zhao,Junming Jian,Xin Gao,Shuanghu Yuan
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 1538-1547 被引量:30
标识
DOI:10.1007/s00330-021-08277-y
摘要

The goal of this study was to evaluate the effectiveness of radiomics signatures on pre-treatment computed tomography (CT) images of lungs to predict the tumor responses of non-small cell lung cancer (NSCLC) patients treated with first-line chemotherapy, targeted therapy, or a combination of both. This retrospective study included 322 NSCLC patients who were treated with first-line chemotherapy, targeted therapy, or a combination of both. Of these patients, 224 were randomly assigned to a cohort to help develop the radiomics signature. A total of 1946 radiomics features were obtained from each patient’s CT scan. The top-ranked features were selected by the Minimum Redundancy Maximum Relevance (MRMR) feature-ranking method and used to build a lightweight radiomics signature with the Random Forest (RF) classifier. The independent predictive (IP) features (AUC > 0.6, p value < 0.05) were further identified from the top-ranked features and used to build a refined radiomics signature by the RF classifier. Its prediction performance was tested on the validation cohort, which consisted of the remaining 98 patients. The initial lightweight radiomics signature constructed from 15 top-ranked features had an AUC of 0.721 (95% CI, 0.619–0.823). After six IP features were further identified and a refined radiomics signature was built, it had an AUC of 0.746 (95% CI, 0.646–0.846). Radiomics signatures based on pre-treatment CT scans can accurately predict tumor response in NSCLC patients after first-line chemotherapy or targeted therapy treatments. Radiomics features could be used as promising prognostic imaging biomarkers in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渔婆完成签到,获得积分10
刚刚
谨慎垣完成签到,获得积分10
刚刚
皮皮虾完成签到 ,获得积分10
1秒前
katrina完成签到,获得积分10
2秒前
2秒前
3秒前
马登完成签到,获得积分10
3秒前
离言完成签到,获得积分10
3秒前
知性的问玉完成签到,获得积分10
3秒前
4秒前
酚羟基装醇完成签到,获得积分10
5秒前
亚当完成签到 ,获得积分10
5秒前
清清甜应助lzh采纳,获得10
5秒前
永远55度发布了新的文献求助10
6秒前
6666666发布了新的文献求助10
6秒前
童话完成签到,获得积分10
6秒前
6秒前
sujinyu发布了新的文献求助10
6秒前
lkk完成签到,获得积分10
7秒前
勤勤的新星完成签到,获得积分10
7秒前
7秒前
科研小牛马完成签到,获得积分10
7秒前
guohuameike完成签到,获得积分10
8秒前
zanedou完成签到,获得积分10
8秒前
红绿蓝完成签到 ,获得积分10
8秒前
8秒前
希望天下0贩的0应助ggdio采纳,获得10
8秒前
NANFENGSUSU发布了新的文献求助10
9秒前
9秒前
天天快乐应助justonce采纳,获得10
9秒前
9秒前
9秒前
你去打输出关注了科研通微信公众号
9秒前
10秒前
阳光明媚完成签到,获得积分10
10秒前
Akim应助胡小壳采纳,获得10
10秒前
11秒前
青灿笑完成签到,获得积分10
12秒前
小超人发布了新的文献求助30
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044