自编码
计算机科学
人工智能
特征选择
胶质母细胞瘤
无线电技术
卷积神经网络
随机森林
工作流程
特征(语言学)
机器学习
模式识别(心理学)
深度学习
数据库
医学
癌症研究
哲学
语言学
作者
Sveinn Pálsson,Stefano Cerri,Koen Van Leemput
标识
DOI:10.1007/978-3-031-09002-8_20
摘要
In this paper we propose a method for predicting the status of MGMT promoter methylation in high-grade gliomas. From the available MR images, we segment the tumor using deep convolutional neural networks and extract both radiomic features and shape features learned by a variational autoencoder. We implemented a standard machine learning workflow to obtain predictions, consisting of feature selection followed by training of a random forest classification model. We trained and evaluated our method on the RSNA-ASNR-MICCAI BraTS 2021 challenge dataset and submitted our predictions to the challenge.
科研通智能强力驱动
Strongly Powered by AbleSci AI