Breast cancer diagnosis based on guided Water Strider Algorithm.

预处理器 分割 计算机科学 乳腺癌 乳腺摄影术 人工智能 分类器(UML) 算法 模式识别(心理学) 特征选择
作者
Dezhong Bi,Yuxi Liu,Naser Youssefi,Dan Chen,Yuexiang Ma
出处
标识
DOI:10.1177/09544119211039033
摘要

Breast cancer is one of the main cancers that effect of the women's health. This cancer is one of the most important health issues in the world and because of that, diagnosis in the beginning and appropriate cure is very effective in the recovery and survival of patients, so image processing as a decision-making tool can assist physicians in the early diagnosis of cancer. Image processing mechanisms are simple and non-invasive methods for identifying cancer cells that accelerate early detection and ultimately increase the chances of cancer patients surviving. In this study, a pipeline methodology is proposed for optimal diagnosis of the breast cancer area in the mammography images. Based on the proposed method, after image preprocessing and filtering for noise reduction, a simple and fast tumors mass segmentation based on Otsu threshold segmentation and mathematical morphology is proposed. Afterward, for simplifying the final diagnosis, a feature extraction based on 22 structural features is utilized. To reduce and pruning the useless features, an optimized feature selection based on a new developed design of Water Strider Algorithm (WSA), called Guided WSA (GWSA). Finally, the features injected to an optimized SVM classifier based on GWSA for optimal cancer diagnosis. Simulations of the suggested method are applied to the DDSM database. A comparison of the results with several latest approaches are performed to indicate the method higher effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangzh发布了新的文献求助10
刚刚
科研通AI2S应助北冥有鱼采纳,获得10
2秒前
Rita发布了新的文献求助10
3秒前
CodeCraft应助学渣本渣采纳,获得10
4秒前
4秒前
李健应助sinoatrial采纳,获得20
5秒前
6秒前
7秒前
科研通AI2S应助wangzh采纳,获得10
8秒前
wanci应助简Moild采纳,获得10
10秒前
12334发布了新的文献求助10
10秒前
科研小白发布了新的文献求助10
10秒前
CodeCraft应助风笛采纳,获得10
10秒前
博林大师发布了新的文献求助10
11秒前
晓晓来了发布了新的文献求助10
13秒前
14秒前
慕容采文发布了新的文献求助10
14秒前
uolo完成签到 ,获得积分10
14秒前
不配.应助猪猪采纳,获得20
16秒前
lyh完成签到,获得积分10
16秒前
17秒前
cheng完成签到,获得积分10
17秒前
liujy关注了科研通微信公众号
18秒前
宇宇宇发布了新的文献求助10
19秒前
19秒前
Hello应助专一的书雪采纳,获得10
19秒前
20秒前
乐乐应助快乐的呼呼采纳,获得10
20秒前
研友_VZG7GZ应助晓晓来了采纳,获得10
22秒前
Hello应助走心采纳,获得10
23秒前
东山月发布了新的文献求助10
25秒前
科研人完成签到,获得积分10
25秒前
sinoatrial发布了新的文献求助20
26秒前
Jing发布了新的文献求助10
27秒前
28秒前
28秒前
YIN222发布了新的文献求助10
29秒前
wanci应助sda采纳,获得10
29秒前
FiroZhang完成签到,获得积分10
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145183
求助须知:如何正确求助?哪些是违规求助? 2796550
关于积分的说明 7820359
捐赠科研通 2452897
什么是DOI,文献DOI怎么找? 1305280
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449