Breast cancer diagnosis based on guided Water Strider Algorithm.

预处理器 分割 计算机科学 乳腺癌 乳腺摄影术 人工智能 分类器(UML) 算法 模式识别(心理学) 特征选择
作者
Dezhong Bi,Yuxi Liu,Naser Youssefi,Dan Chen,Yuexiang Ma
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE Publishing]
卷期号:236 (1): 30-42
标识
DOI:10.1177/09544119211039033
摘要

Breast cancer is one of the main cancers that effect of the women's health. This cancer is one of the most important health issues in the world and because of that, diagnosis in the beginning and appropriate cure is very effective in the recovery and survival of patients, so image processing as a decision-making tool can assist physicians in the early diagnosis of cancer. Image processing mechanisms are simple and non-invasive methods for identifying cancer cells that accelerate early detection and ultimately increase the chances of cancer patients surviving. In this study, a pipeline methodology is proposed for optimal diagnosis of the breast cancer area in the mammography images. Based on the proposed method, after image preprocessing and filtering for noise reduction, a simple and fast tumors mass segmentation based on Otsu threshold segmentation and mathematical morphology is proposed. Afterward, for simplifying the final diagnosis, a feature extraction based on 22 structural features is utilized. To reduce and pruning the useless features, an optimized feature selection based on a new developed design of Water Strider Algorithm (WSA), called Guided WSA (GWSA). Finally, the features injected to an optimized SVM classifier based on GWSA for optimal cancer diagnosis. Simulations of the suggested method are applied to the DDSM database. A comparison of the results with several latest approaches are performed to indicate the method higher effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
m鹿m嘟啦完成签到 ,获得积分10
刚刚
1秒前
李朝阳完成签到,获得积分10
2秒前
2秒前
爆米花应助tyy采纳,获得10
2秒前
2秒前
小张求论文完成签到,获得积分10
3秒前
3秒前
桐桐应助烩面大师采纳,获得10
3秒前
3秒前
挽风发布了新的文献求助10
4秒前
4秒前
proton完成签到,获得积分10
4秒前
4秒前
尔玉完成签到 ,获得积分10
5秒前
5秒前
韶邑发布了新的文献求助10
6秒前
6秒前
精明的书白完成签到,获得积分10
7秒前
7秒前
砂糖发布了新的文献求助10
7秒前
CYYDNDB发布了新的文献求助30
8秒前
刘巧明完成签到 ,获得积分10
8秒前
罗永昊发布了新的文献求助10
8秒前
等待小刺猬完成签到,获得积分10
9秒前
9秒前
生动梦桃发布了新的文献求助10
9秒前
10秒前
热心市民小红花应助niania采纳,获得10
10秒前
11秒前
慕青应助alice采纳,获得10
11秒前
joyce930728发布了新的文献求助10
11秒前
11秒前
lyn发布了新的文献求助200
11秒前
证基发布了新的文献求助10
11秒前
烩面大师发布了新的文献求助10
12秒前
沉默傲芙发布了新的文献求助10
12秒前
12秒前
13秒前
砂糖完成签到,获得积分20
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002