In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms

刚度 非线性系统 联动装置(软件) 理论(学习稳定性) 工程类 计算机科学 结构工程 机械工程 控制理论(社会学) 控制(管理) 量子力学 基因 生物化学 机器学习 物理 人工智能 化学
作者
Xingjian Jing,Yuyang Chai,Chao Xu,Jing Bian
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:170: 108267-108267 被引量:89
标识
DOI:10.1016/j.ymssp.2021.108267
摘要

A desired structural or material stiffness is critical in many engineering systems for structural stability, vibration control, energy saving and manipulation efficiency. However, passive low-cost high-efficiency in-situ adjustable stiffness systems have not yet been well explored, due to uncertain and unexpected nonlinear behavior within materials and structures, difficulty or limitations in manufacturing or implementation, and various demanding requirements. To address these challenges, we present an efficient stiffness-manipulation method using a flexible and compact X-shaped structure (or mechanism). The resulting nonlinear stiffness systems can be conveniently realized and are capable for achieving various desired stiffness (positive, negative, zero or quasi-zero, multi-stable-equilibria). The inherent nonlinearity of such nonlinear stiffness systems is completely controllable and predictable with simple and reliable mathematical modelling, compared to many other metal materials or foldable mechanisms/structures. Due to the advantages of linkage mechanisms, the X-shaped structure (or mechanism) approach offers superior in-situ adjustability which can be easily achieved via various and simple pre-extension/distance/length/height adjustable mechanisms in practical mechanical designs. The stiffness-manipulation methods demonstrated in this study have also advantages including simplicity and efficiency in manufacturing and assembly, high-quality nonlinearity control and in-situ adjustability, and low-cost part production, without stability issues, manufacturing difficulty and strict material restriction, leading to revolutionary or upgrading technologies to existing engineering systems. Theoretical analysis and experimental validation (or case studies) demonstrate the advantages, effectiveness, and great potential of this new approach for exploiting nonlinearities in various engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷糊发布了新的文献求助30
刚刚
LY发布了新的文献求助10
1秒前
zzz完成签到,获得积分10
1秒前
KimJongUn完成签到,获得积分10
1秒前
3秒前
3秒前
zy完成签到,获得积分10
4秒前
开心果子发布了新的文献求助10
4秒前
云痴子完成签到,获得积分10
5秒前
SciGPT应助粥粥采纳,获得10
5秒前
5秒前
5秒前
6秒前
苏源完成签到,获得积分10
6秒前
wu关闭了wu文献求助
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
Shawn完成签到,获得积分10
9秒前
yltstt完成签到,获得积分10
10秒前
李小新发布了新的文献求助10
10秒前
成梦发布了新的文献求助10
11秒前
乐乐应助xuex1采纳,获得10
11秒前
蜂鸟5156发布了新的文献求助10
11秒前
李爱国应助VDC采纳,获得10
12秒前
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
ns完成签到,获得积分10
13秒前
细腻晓露发布了新的文献求助10
13秒前
李本来发布了新的文献求助10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得30
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808