已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Mutational Effects on Receptor Binding of the Spike Protein of SARS-CoV-2 Variants

突变体 突变 生物信息学 病毒 抗体 传染性 化学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 穗蛋白 遗传学 计算生物学 结合位点 2019年冠状病毒病(COVID-19) 基因 生物 生物化学 传染病(医学专业) 病理 疾病 医学
作者
Chen Bai,Junlin Wang,Geng Chen,Honghui Zhang,Ke An,Peiyi Xu,Yang Du,Richard D. Ye,Arjun Saha,Aoxuan Zhang,Arieh Warshel
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (42): 17646-17654 被引量:41
标识
DOI:10.1021/jacs.1c07965
摘要

The pandemic caused by SARS-CoV-2 has cost millions of lives and tremendous social/financial loss. The virus continues to evolve and mutate. In particular, the recently emerged "UK", "South Africa", and Delta variants show higher infectivity and spreading speed. Thus, the relationship between the mutations of certain amino acids and the spreading speed of the virus is a problem of great importance. In this respect, understanding the mutational mechanism is crucial for surveillance and prediction of future mutations as well as antibody/vaccine development. In this work, we used a coarse-grained model (that was used previously in predicting the importance of mutations of N501) to calculate the free energy change of various types of single-site or combined-site mutations. This was done for the UK, South Africa, and Delta mutants. We investigated the underlying mechanisms of the binding affinity changes for mutations at different spike protein domains of SARS-CoV-2 and provided the energy basis for the resistance of the E484 mutant to the antibody m396. Other potential mutation sites were also predicted. Furthermore, the in silico predictions were assessed by functional experiments. The results establish that the faster spreading of recently observed mutants is strongly correlated with the binding-affinity enhancement between virus and human receptor as well as with the reduction of the binding to the m396 antibody. Significantly, the current approach offers a way to predict new variants and to assess the effectiveness of different antibodies toward such variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fancy发布了新的文献求助10
1秒前
T11完成签到,获得积分10
1秒前
司空博涛发布了新的文献求助10
4秒前
辽沈最美女博完成签到,获得积分10
4秒前
夹心发布了新的文献求助10
4秒前
4秒前
上官若男应助欧梨欧梨采纳,获得10
4秒前
4秒前
5秒前
领导范儿应助99tyz采纳,获得30
5秒前
思源应助和谐悲采纳,获得10
7秒前
8秒前
可爱的函函应助白华苍松采纳,获得10
8秒前
x10n发布了新的文献求助10
8秒前
9秒前
10秒前
Kumple发布了新的文献求助10
10秒前
wzwer123发布了新的文献求助10
11秒前
宜醉宜游宜睡应助君莫笑采纳,获得10
12秒前
江峰发布了新的文献求助10
14秒前
椰子完成签到,获得积分10
17秒前
20秒前
恋风恋歌发布了新的文献求助10
21秒前
顶峰完成签到 ,获得积分10
21秒前
Vivian完成签到,获得积分10
23秒前
美好斓发布了新的文献求助10
24秒前
linjy发布了新的文献求助10
24秒前
x10n完成签到,获得积分10
25秒前
99tyz完成签到,获得积分10
25秒前
26秒前
27秒前
温纲完成签到,获得积分10
27秒前
28秒前
Binbin完成签到 ,获得积分10
28秒前
29秒前
深情安青应助linjy采纳,获得10
29秒前
mmyhn发布了新的文献求助10
30秒前
tqqwerty发布了新的文献求助10
31秒前
可爱的函函应助江峰采纳,获得10
31秒前
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150370
求助须知:如何正确求助?哪些是违规求助? 2801504
关于积分的说明 7845091
捐赠科研通 2459062
什么是DOI,文献DOI怎么找? 1308898
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727