材料科学
陶瓷
温度系数
烧结
微波食品加热
电介质
制作
放电等离子烧结
介电常数
相对介电常数
分析化学(期刊)
熔点
金红石
复合材料
光电子学
化学工程
医学
化学
替代医学
病理
量子力学
色谱法
物理
工程类
作者
Chunchun Li,Congling Yin,Jibran Khaliq,Laijun Liu
标识
DOI:10.1021/acssuschemeng.1c04791
摘要
At extremely low temperatures, Ag2CaV4O12 was easily synthesized using the traditional solid-state approach. With a low relative permittivity (εr) of 7.52, a high quality factor (Q × f) of 48 800 GHz (f = 13.6 GHz), and a temperature coefficient of resonance frequency (τf) of −77.4 ppm/°C, dense ceramics sintered at 480 °C with outstanding microwave dielectric characteristics were attained. By combining with rutile TiO2, a composite ceramic with balanced microwave dielectric properties (τf = 3.2 ppm/°C, εr = 10.96, and Q × f = 49 081 GHz) was achieved. No chemical reaction between Ag2CaV4O12 and silver and aluminum occurred. All of the findings show that Ag2CaV4O12 has the potential to be used as dielectric resonances in wireless communication and as substrates in low-temperature cofired ceramics. Furthermore, the processing at an ultralow temperature of Ag2CaV4O12 shows that it is extraordinarily energy saving from the point of view of fabrication and might allow for room-temperature synthesis by combining with high-energy mechanical milling or sintering using a high pressure such as hot isostatic pressing (HIP), spark plasma sintering (SPS), and cold sintering (CS).
科研通智能强力驱动
Strongly Powered by AbleSci AI