Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for Hierarchical Federated Learning

计算机科学 服务器 分布式计算 瓶颈 激励 资源配置 原始数据 GSM演进的增强数据速率 云计算 边缘设备 计算机网络 人工智能 操作系统 嵌入式系统 经济 微观经济学 程序设计语言
作者
Wei Yang Bryan Lim,Jer Shyuan Ng,Zehui Xiong,Jiangming Jin,Yang Zhang,Dusit Niyato,Cyril Leung,Miao Chen
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 536-550 被引量:92
标识
DOI:10.1109/tpds.2021.3096076
摘要

To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is produced. One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm known as Federated Learning (FL), which enables data owners to conduct model training without having to transmit their raw data to third-party servers. However, the FL network is envisioned to involve thousands of heterogeneous distributed devices. As a result, communication inefficiency remains a key bottleneck. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this article, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange for the data owners' participation, and the data owners are free to choose which cluster to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, each cluster head can choose to serve a model owner, whereas the model owners have to compete amongst each other for the services of the cluster heads. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head's services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing properties of the deep learning based auction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hope完成签到,获得积分10
1秒前
葫芦芦芦完成签到 ,获得积分10
2秒前
2秒前
Andy完成签到,获得积分10
2秒前
4秒前
Yoki完成签到,获得积分10
5秒前
医路潜行完成签到,获得积分20
5秒前
wyw完成签到 ,获得积分10
7秒前
wushang完成签到 ,获得积分10
7秒前
fengcosky发布了新的文献求助10
8秒前
Owen应助SCIER采纳,获得10
9秒前
医路潜行发布了新的文献求助10
9秒前
哎哟我去完成签到,获得积分10
9秒前
10秒前
66完成签到,获得积分10
11秒前
CH完成签到,获得积分10
11秒前
Skye完成签到 ,获得积分10
12秒前
ding应助奋斗的小鸟采纳,获得10
14秒前
NI伦Ge发布了新的文献求助10
17秒前
夏天来了发布了新的文献求助10
17秒前
许鸽完成签到,获得积分10
18秒前
dong完成签到 ,获得积分10
19秒前
22秒前
1no完成签到 ,获得积分10
22秒前
24秒前
大翟完成签到,获得积分10
25秒前
miemie66完成签到,获得积分10
26秒前
28秒前
29秒前
NI伦Ge完成签到,获得积分10
31秒前
酷波er应助科研通管家采纳,获得10
32秒前
32秒前
隐形曼青应助科研通管家采纳,获得10
32秒前
32秒前
CipherSage应助科研通管家采纳,获得30
32秒前
32秒前
顾矜应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
Owen应助科研通管家采纳,获得10
32秒前
思源应助科研通管家采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571428
求助须知:如何正确求助?哪些是违规求助? 3141983
关于积分的说明 9445184
捐赠科研通 2843436
什么是DOI,文献DOI怎么找? 1562857
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524