亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SCG: Saliency and Contour Guided Salient Instance Segmentation

人工智能 计算机科学 分割 突出 模式识别(心理学) 杠杆(统计) 计算机视觉 图像分割 特征(语言学) 背景(考古学) 像素 保险丝(电气) 生物 电气工程 工程类 哲学 古生物学 语言学
作者
Nian Liu,Wangbo Zhao,Ling Shao,Junwei Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 5862-5874 被引量:11
标识
DOI:10.1109/tip.2021.3088282
摘要

Different from conventional instance segmentation, salient instance segmentation (SIS) faces two difficulties. The first is that it involves segmenting salient instances only while ignoring background, and the second is that it targets generic object instances without pre-defined object categories. In this paper, based on the state-of-the-art Mask R-CNN model, we propose to leverage complementary saliency and contour information to handle these two challenges. We first improve Mask R-CNN by introducing an interleaved execution strategy and proposing a novel mask head network to incorporate global context within each RoI. Then we add two branches to Mask R-CNN for saliency and contour detection, respectively. We fuse the Mask R-CNN features with the saliency and contour features, where the former supply pixel-wise saliency information to help with identifying salient regions and the latter provide a generic object contour prior to help detect and segment generic objects. We also propose a novel multiscale global attention model to generate attentive global features from multiscale representative features for feature fusion. Experimental results demonstrate that all our proposed model components can improve SIS performance. Finally, our overall model outperforms state-of-the-art SIS methods and Mask R-CNN by more than 6% and 3%, respectively. By using additional multitask training data, we can further improve the model performance on the ILSO dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
17秒前
火山蜗牛完成签到,获得积分10
35秒前
天天快乐应助小白采纳,获得10
52秒前
ilk666完成签到,获得积分10
1分钟前
1分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
平常以云完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
傅嘉庆发布了新的文献求助10
4分钟前
小白发布了新的文献求助10
4分钟前
4分钟前
不安青牛应助zhangxiaoqing采纳,获得10
4分钟前
小马甲应助傅嘉庆采纳,获得10
4分钟前
啦啦啦发布了新的文献求助10
4分钟前
5分钟前
xxi发布了新的文献求助10
5分钟前
大模型应助Chloe采纳,获得10
5分钟前
小白完成签到 ,获得积分10
5分钟前
爆米花应助啦啦啦采纳,获得10
5分钟前
Jasper应助哈皮波采纳,获得10
5分钟前
5分钟前
哈皮波发布了新的文献求助10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
Chloe发布了新的文献求助10
6分钟前
开放道天发布了新的文献求助30
6分钟前
6分钟前
6分钟前
鱼鱼片片发布了新的文献求助10
6分钟前
啦啦啦发布了新的文献求助10
6分钟前
852应助开放道天采纳,获得10
7分钟前
啦啦啦完成签到,获得积分10
7分钟前
bbbbb发布了新的文献求助30
7分钟前
bbbbb完成签到,获得积分10
7分钟前
wwe完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681763
求助须知:如何正确求助?哪些是违规求助? 5012693
关于积分的说明 15176093
捐赠科研通 4841267
什么是DOI,文献DOI怎么找? 2595068
邀请新用户注册赠送积分活动 1548093
关于科研通互助平台的介绍 1506093