内容(测量理论)
盐(化学)
卷积神经网络
分光计
相关系数
近红外光谱
碱金属
光谱学
红外线的
人工智能
土壤盐分
计算机科学
分析化学(期刊)
遥感
化学
材料科学
土壤科学
环境科学
土壤水分
数学
光学
地质学
机器学习
物理
色谱法
有机化学
物理化学
数学分析
量子力学
作者
Dong Xiao,Vũ Quốc Huy,Ba Tuan Le
标识
DOI:10.1016/j.microc.2021.106182
摘要
Quickly measuring the salt content in saline-alkali soil (SAS) is an important task. This study proposes a method for rapid detection of salt content. First, we collected the SAS samples and measured the spectral data of these samples with a visible-near infrared spectrometer. Second, a method of converting one-dimensional into two-dimensional spectral data is proposed. Finally, based on convolutional neural network, gravitational search algorithm and reservoir computing extreme learning machine, a salt detection model is constructed. The experimental results show that our proposed method can effectively detect the salt content of SAS with the coefficient of determination value is 0.9 and the root-mean-square error value is 1.55. This method can achieve online rapid detection of salt content. Compared with chemical analysis method, the proposed method saves time and cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI