溶解
细胞质
固定(群体遗传学)
生物物理学
细胞生物学
细胞
荧光
枯草芽孢杆菌
生物
细胞内
化学
生物化学
细菌
遗传学
基因
物理
量子力学
作者
Lillian Zhu,Manohary Rajendram,Kerwyn Casey Huang
出处
期刊:iScience
[Elsevier]
日期:2021-03-23
卷期号:24 (4): 102348-102348
被引量:23
标识
DOI:10.1016/j.isci.2021.102348
摘要
Summary
Fixation facilitates imaging of subcellular localization and cell morphology, yet it remains unknown how fixation affects cellular dimensions and intracellular fluorescence patterns, particularly during long-term storage. Here, we characterized the effects of multiple fixatives on several bacterial species. Fixation generally reduced cell length by 5–15%; single-cell tracking in microfluidics revealed that the length decrease was an aggregate effect of many steps in the fixation protocol and that fluorescence of cytoplasmic GFP but not membrane-bound MreB-msfGFP was rapidly lost with formaldehyde-based fixatives. Cellular dimensions were preserved in formaldehyde-based fixatives for ≥4 days, but methanol caused length to decrease. Although methanol preserved cytoplasmic fluorescence better than formaldehyde-based fixatives, some Escherichia coli cells were able to grow directly after fixation. Moreover, methanol fixation caused lysis in a subpopulation of cells, with virtually all Bacillus subtilis cells lysing after one day. These findings highlight tradeoffs between maintenance of fluorescence and membrane integrity for future applications of fixation.
科研通智能强力驱动
Strongly Powered by AbleSci AI