Light-weight cross-view hierarchical fusion network for joint localization and identification in Alzheimer's disease with adaptive instance-declined pruning.

计算机科学 人工智能 模式识别(心理学) 接头(建筑物) 特征(语言学) 算法 人工神经网络 特征选择 机器学习 融合
作者
Kangfu Han,Jiaxiu Luo,Qing Xiao,Zhenyuan Ning,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (8): 085013-
标识
DOI:10.1088/1361-6560/abf200
摘要

Magnetic resonance imaging (MRI) has been widely used in assessing development of Alzheimer's disease (AD) by providing structural information of disease-associated regions (e.g., atrophic regions). In this paper, we propose a light-weight cross-view hierarchical fusion network (CvHF-net), consisting of local patch and global subject subnets, for joint localization and identification of the discriminative local patches and regions in the whole brain MRI, upon which feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis. Firstly, based on the extracted class-discriminative 3D patches, we employ the local patch subnets to utilize multiple 2D views to represent 3D patches by using an attention-aware hierarchical fusion structure in a divide-and-conquer manner. Since different local patches are with various abilities in AD identification, the global subject subnet is developed to bias the allocation of available resources towards the most informative parts among these local patches to obtain global information for AD identification. Besides, an instance declined pruning (IDP) algorithm is embedded in the CvHF-net for adaptively selecting most discriminant patches in a task-driven manner. The proposed method was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the experimental results show that our proposed method can achieve good performance on AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助陈楠采纳,获得10
刚刚
刚刚
溪氤完成签到 ,获得积分10
刚刚
妞妞完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
GY完成签到,获得积分10
2秒前
xiaomoli完成签到,获得积分10
2秒前
2秒前
jijiguo发布了新的文献求助10
3秒前
li发布了新的文献求助10
3秒前
斯文败类应助李霞采纳,获得10
3秒前
3秒前
秋风完成签到,获得积分20
3秒前
4秒前
Hello应助Amber-GXY采纳,获得10
4秒前
无限的雨梅完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
kingmantj发布了新的文献求助10
5秒前
SciGPT应助皮不可采纳,获得10
5秒前
飞盘通完成签到,获得积分10
5秒前
HUSHIYI发布了新的文献求助10
6秒前
6秒前
锂安完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
赵小哼发布了新的文献求助10
6秒前
飞云发布了新的文献求助30
7秒前
尹兴亮发布了新的文献求助10
7秒前
Eva完成签到 ,获得积分10
7秒前
7秒前
WSR完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261224
求助须知:如何正确求助?哪些是违规求助? 4422343
关于积分的说明 13765975
捐赠科研通 4296787
什么是DOI,文献DOI怎么找? 2357517
邀请新用户注册赠送积分活动 1353903
关于科研通互助平台的介绍 1315103