Light-weight cross-view hierarchical fusion network for joint localization and identification in Alzheimer's disease with adaptive instance-declined pruning.

计算机科学 人工智能 模式识别(心理学) 接头(建筑物) 特征(语言学) 算法 人工神经网络 特征选择 机器学习 融合
作者
Kangfu Han,Jiaxiu Luo,Qing Xiao,Zhenyuan Ning,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (8): 085013-
标识
DOI:10.1088/1361-6560/abf200
摘要

Magnetic resonance imaging (MRI) has been widely used in assessing development of Alzheimer's disease (AD) by providing structural information of disease-associated regions (e.g., atrophic regions). In this paper, we propose a light-weight cross-view hierarchical fusion network (CvHF-net), consisting of local patch and global subject subnets, for joint localization and identification of the discriminative local patches and regions in the whole brain MRI, upon which feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis. Firstly, based on the extracted class-discriminative 3D patches, we employ the local patch subnets to utilize multiple 2D views to represent 3D patches by using an attention-aware hierarchical fusion structure in a divide-and-conquer manner. Since different local patches are with various abilities in AD identification, the global subject subnet is developed to bias the allocation of available resources towards the most informative parts among these local patches to obtain global information for AD identification. Besides, an instance declined pruning (IDP) algorithm is embedded in the CvHF-net for adaptively selecting most discriminant patches in a task-driven manner. The proposed method was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the experimental results show that our proposed method can achieve good performance on AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
重要问筠发布了新的文献求助10
1秒前
1秒前
伯云发布了新的文献求助10
1秒前
汉堡包应助搞怪世德采纳,获得10
1秒前
Jasper应助科研小白鼠采纳,获得10
1秒前
风中楷瑞发布了新的文献求助10
1秒前
2秒前
小马奔奔发布了新的文献求助10
2秒前
Jasper应助笨笨含羞草采纳,获得10
2秒前
青野发布了新的文献求助10
2秒前
2秒前
大杨完成签到,获得积分20
3秒前
4秒前
张光辉发布了新的文献求助10
5秒前
研友_VZG7GZ应助七曜采纳,获得30
5秒前
共享精神应助默默乘云采纳,获得10
6秒前
peanut完成签到 ,获得积分10
6秒前
宋宋宋2完成签到,获得积分10
6秒前
正直发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
大胆老头关注了科研通微信公众号
9秒前
10秒前
追寻书雁完成签到 ,获得积分10
10秒前
11秒前
11秒前
jin完成签到 ,获得积分10
11秒前
11秒前
研友_VZG7GZ应助无情的匪采纳,获得10
11秒前
伯云完成签到,获得积分10
12秒前
张光辉完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
小明同学完成签到,获得积分10
14秒前
大熊发布了新的文献求助10
15秒前
cfy完成签到,获得积分10
15秒前
一树发布了新的文献求助10
15秒前
16秒前
yyyyyyy发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214