Light-weight cross-view hierarchical fusion network for joint localization and identification in Alzheimer's disease with adaptive instance-declined pruning.

计算机科学 人工智能 模式识别(心理学) 接头(建筑物) 特征(语言学) 算法 人工神经网络 特征选择 机器学习 融合
作者
Kangfu Han,Jiaxiu Luo,Qing Xiao,Zhenyuan Ning,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (8): 085013-
标识
DOI:10.1088/1361-6560/abf200
摘要

Magnetic resonance imaging (MRI) has been widely used in assessing development of Alzheimer's disease (AD) by providing structural information of disease-associated regions (e.g., atrophic regions). In this paper, we propose a light-weight cross-view hierarchical fusion network (CvHF-net), consisting of local patch and global subject subnets, for joint localization and identification of the discriminative local patches and regions in the whole brain MRI, upon which feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis. Firstly, based on the extracted class-discriminative 3D patches, we employ the local patch subnets to utilize multiple 2D views to represent 3D patches by using an attention-aware hierarchical fusion structure in a divide-and-conquer manner. Since different local patches are with various abilities in AD identification, the global subject subnet is developed to bias the allocation of available resources towards the most informative parts among these local patches to obtain global information for AD identification. Besides, an instance declined pruning (IDP) algorithm is embedded in the CvHF-net for adaptively selecting most discriminant patches in a task-driven manner. The proposed method was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the experimental results show that our proposed method can achieve good performance on AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Erika完成签到,获得积分10
刚刚
JamesPei应助聪明凌丝采纳,获得10
1秒前
2秒前
良辰应助完美的海秋采纳,获得10
3秒前
yy2023应助M张采纳,获得10
3秒前
3秒前
乐乐应助可乐采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
浅尝离白应助科研通管家采纳,获得20
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
淼焱完成签到,获得积分10
4秒前
HCLonely应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
子车茗应助科研通管家采纳,获得10
5秒前
5秒前
徐家培发布了新的文献求助10
5秒前
张小明发布了新的文献求助10
6秒前
Erika发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
FeversKim完成签到,获得积分10
8秒前
元元发布了新的文献求助30
10秒前
Lolo完成签到,获得积分10
10秒前
Qingwenxin发布了新的文献求助10
10秒前
翻羽发布了新的文献求助10
11秒前
张小明完成签到,获得积分10
12秒前
WANG.发布了新的文献求助10
12秒前
共享精神应助思睿拜采纳,获得10
12秒前
于芋菊发布了新的文献求助10
13秒前
等于几都行完成签到 ,获得积分10
14秒前
Robin95完成签到 ,获得积分10
15秒前
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243808
求助须知:如何正确求助?哪些是违规求助? 2887618
关于积分的说明 8249384
捐赠科研通 2556359
什么是DOI,文献DOI怎么找? 1384427
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625794