Light-weight cross-view hierarchical fusion network for joint localization and identification in Alzheimer's disease with adaptive instance-declined pruning.

计算机科学 人工智能 模式识别(心理学) 接头(建筑物) 特征(语言学) 算法 人工神经网络 特征选择 机器学习 融合
作者
Kangfu Han,Jiaxiu Luo,Qing Xiao,Zhenyuan Ning,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (8): 085013-
标识
DOI:10.1088/1361-6560/abf200
摘要

Magnetic resonance imaging (MRI) has been widely used in assessing development of Alzheimer's disease (AD) by providing structural information of disease-associated regions (e.g., atrophic regions). In this paper, we propose a light-weight cross-view hierarchical fusion network (CvHF-net), consisting of local patch and global subject subnets, for joint localization and identification of the discriminative local patches and regions in the whole brain MRI, upon which feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis. Firstly, based on the extracted class-discriminative 3D patches, we employ the local patch subnets to utilize multiple 2D views to represent 3D patches by using an attention-aware hierarchical fusion structure in a divide-and-conquer manner. Since different local patches are with various abilities in AD identification, the global subject subnet is developed to bias the allocation of available resources towards the most informative parts among these local patches to obtain global information for AD identification. Besides, an instance declined pruning (IDP) algorithm is embedded in the CvHF-net for adaptively selecting most discriminant patches in a task-driven manner. The proposed method was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the experimental results show that our proposed method can achieve good performance on AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xx.发布了新的文献求助10
刚刚
大大关注了科研通微信公众号
刚刚
稚祎完成签到 ,获得积分10
刚刚
刚刚
CodeCraft应助东东采纳,获得10
1秒前
2秒前
叽里咕噜完成签到 ,获得积分10
3秒前
田様应助zccc采纳,获得10
4秒前
隐形的雁完成签到,获得积分10
4秒前
追寻的秋玲完成签到,获得积分10
5秒前
李繁蕊发布了新的文献求助10
5秒前
6秒前
舒心的紫雪完成签到 ,获得积分10
7秒前
7秒前
9秒前
9秒前
10秒前
不上课不行完成签到,获得积分10
11秒前
再干一杯完成签到,获得积分10
11秒前
12秒前
汉堡包应助rudjs采纳,获得10
13秒前
13秒前
zsyzxb发布了新的文献求助10
14秒前
东东发布了新的文献求助10
14秒前
zena92发布了新的文献求助10
15秒前
锤子米完成签到,获得积分10
15秒前
15秒前
赤练仙子完成签到,获得积分10
17秒前
MnO2fff应助zsyzxb采纳,获得20
20秒前
kingwill应助zsyzxb采纳,获得20
20秒前
顺利鱼完成签到,获得积分10
21秒前
23秒前
24秒前
Xx.完成签到,获得积分10
25秒前
星辰大海应助内向凌兰采纳,获得10
25秒前
25秒前
wuzhizhiya完成签到,获得积分10
26秒前
27秒前
rudjs发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808