Predicting the stages of liver fibrosis with multiphase CT radiomics based on volumetric features

医学 接收机工作特性 曲线下面积 阶段(地层学) 再现性 核医学 放射科 肝病学 内科学 曲线下面积 肝硬化 数学 古生物学 统计 药代动力学 生物
作者
Enming Cui,Wansheng Long,Jian Wu,Qing Li,Changyi Ma,Lei Yi,Fan Lin
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:46 (8): 3866-3876 被引量:11
标识
DOI:10.1007/s00261-021-03051-6
摘要

To develop and externally validate a multiphase computed tomography (CT)-based machine learning (ML) model for staging liver fibrosis (LF) by using whole liver slices. The development dataset comprised 232 patients with pathological analysis for LF, and the test dataset comprised 100 patients from an independent outside institution. Feature extraction was performed based on the precontrast (PCP), arterial (AP), portal vein (PVP) phase, and three-phase CT images. CatBoost was utilized for ML model investigation by using the features with good reproducibility. The diagnostic performance of ML models based on each single- and three-phase CT image was compared with that of radiologists’ interpretations, the aminotransferase-to-platelet ratio index, and the fibrosis index based on four factors (FIB-4) by using the receiver operating characteristic curve with the area under the curve (AUC) value. Although the ML model based on three-phase CT image (AUC = 0.65–0.80) achieved higher AUC value than that based on PCP (AUC = 0.56–0.69) and PVP (AUC = 0.51–0.74) in predicting various stage of LF, significant difference was not found. The best CT-based ML model (AUC = 0.65–0.80) outperformed the FIB-4 in differentiating advanced LF and cirrhosis and radiologists’ interpretation (AUC = 0.50–0.76) in the diagnosis of significant and advanced LF. All PCP, PVP, and three-phase CT-based ML models can be an acceptable in assessing LF, and the performance of the PCP-based ML model is comparable to that of the enhanced CT image-based ML model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助尹尹尹采纳,获得10
刚刚
1秒前
无花果应助拔丝香芋采纳,获得10
1秒前
2秒前
千前发布了新的文献求助10
7秒前
李若溪发布了新的文献求助10
8秒前
SC发布了新的文献求助10
11秒前
科研通AI2S应助宝林采纳,获得10
12秒前
完美毛豆发布了新的文献求助10
15秒前
怡然的怀莲完成签到 ,获得积分20
18秒前
历史雨发布了新的文献求助30
20秒前
21秒前
dudu10000完成签到,获得积分10
22秒前
知性的焦完成签到,获得积分20
22秒前
22秒前
天天快乐应助完美毛豆采纳,获得10
23秒前
敏感板栗发布了新的文献求助10
23秒前
26秒前
26秒前
28秒前
梨梨完成签到,获得积分10
30秒前
jianhan发布了新的文献求助10
31秒前
31秒前
Ava应助科研通管家采纳,获得10
31秒前
aldehyde应助科研通管家采纳,获得20
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
aldehyde应助科研通管家采纳,获得20
32秒前
852应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
32秒前
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
33秒前
半城微凉应助科研通管家采纳,获得10
33秒前
33秒前
CAOHOU应助科研通管家采纳,获得10
33秒前
33秒前
asdfqwer应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432