材料科学
超级电容器
异质结
纳米笼
金属有机骨架
磷化物
制作
储能
层状结构
多孔性
化学工程
纳米技术
光电子学
电容
电极
金属
复合材料
催化作用
化学
物理化学
吸附
量子力学
功率(物理)
病理
有机化学
工程类
冶金
物理
替代医学
生物化学
医学
作者
Shixue He,Fengjiao Guo,Qi Yang,Hongyu Mi,Jingde Li,Nianjun Yang,Jieshan Qiu
出处
期刊:Small
[Wiley]
日期:2021-04-16
卷期号:17 (21)
被引量:118
标识
DOI:10.1002/smll.202100353
摘要
Abstract Metal–organic framework (MOF)‐derived heterostructures possessing the merits of each component are thought to display the enhanced energy storage performance due to their synergistic effect. Herein, a functional heterostructure (NiCoP–MOF) composed of nickel/cobalt‐MOF (NiCo–MOF) and phosphide (NiCoP) is designed and fabricated via the localized phosphorization of unusual lamellar brick‐stacked NiCo–MOF assemblies obtained by a hydrothermal method. The experimental and computational analyses reveal that such‐fabricated heterostructures possess the modulated electronic structure, abundant active sites, and hybrid crystalline feature, which is kinetically beneficial for fast electron/ion transport to enhance the charge storage capability. Examined as the supercapacitor electrode, the obtained NiCoP–MOF compared to the NiCo–MOF delivers a high capacity of 728 C g −1 (1.82 C cm −2 ) at 1 A g −1 with a high capacity retention of 430 C g −1 (1.08 C cm −2 ) when increasing the current density to 20 A g −1 . Importantly, the assembled solid‐state NiCoP–MOF‐based hybrid supercapacitor displays superior properties regarding the capacity (226.3 C g −1 ), energy density (50.3 Wh kg −1 ), and durability (≈100% capacity retention over 10 000 cycles). This in situ heterogenization approach sheds light on the electronic structure modulation while maintaining the well‐defined porosity and morphology, holding promise for designing MOF‐based derivatives for high performance energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI