材料科学
电解质
介孔材料
插层(化学)
化学工程
微观结构
电化学
多孔性
碳纤维
介电谱
假电容器
阳极
储能
纳米技术
超级电容器
复合材料
复合数
无机化学
电极
化学
有机化学
物理化学
催化作用
工程类
物理
功率(物理)
量子力学
作者
Weize Li,Rui Zhang,Zhen Chen,Binbin Fan,Kuikui Xiao,Hui Liu,Peng Gao,Jian‐Fang Wu,Chuanjun Tu,Jilei Liu
出处
期刊:Small
[Wiley]
日期:2021-04-22
卷期号:17 (21)
被引量:55
标识
DOI:10.1002/smll.202100397
摘要
Abstract Hard carbons (HCs) are emerging as promising anodes for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost effectiveness and outstanding physicochemical properties. However, the fundamental K + storage mechanism in HCs and the key structural parameters that determining K + storage behaviors remain unclear and require further exploration. Herein, HC materials with controllable micro/mesopore structures are first synthesized by template‐assisted spray pyrolysis technology. Detailed experimental analyses including in situ Raman and in situ electrochemical impedance spectroscopy analysis reveal two different K + storage ways in the porous hard carbon (p‐HC), e.g., the adsorption mechanism at high potential region and the intercalation mechanism at low potential region. Both are strongly dependent on the evolution of microstructure and significantly affect the electrochemical performance. Specifically, the adequate micropores act as the active sites for efficient K + storage and ion‐buffering reservoir to relieve the volume expansion, ensuring enhanced specific capacity and good structural stability. The abundant mesopores in the porous structure provide conductive pathways for ion diffusion and/or electrolyte infiltration, endowing fast ionic/electronic transport kinetics. All these together contribute to the high energy density of activated carbon//p‐HCs potassium ion hybrid capacitors (74.5 Wh kg −1 , at 184.4 W kg −1 ).
科研通智能强力驱动
Strongly Powered by AbleSci AI