MSSM: A Multiple-level Sparse Sharing Model for Efficient Multi-Task Learning

计算机科学 多任务学习 任务(项目管理) 人工智能 机器学习 学习迁移 集合(抽象数据类型) 领域(数学) 特征(语言学) 一般化 程序设计语言 数学 语言学 数学分析 哲学 经济 管理 纯数学
作者
Ke Ding,Xin Dong,Yong He,Lei Cheng,Chilin Fu,Zhaoxin Huan,Hai Li,Tan Yan,Liang Zhang,Xiaolu Zhang,Linjian Mo
标识
DOI:10.1145/3404835.3463022
摘要

Multi-task learning(MTL) is an open and challenging problem in various real-world applications. The typical way of conducting multi-task learning is establishing some global parameter sharing mechanism across all tasks or assigning each task an individual set of parameters with cross-connections between tasks. However, for most existing approaches, all tasks just thoroughly or proportionally share all the features without distinguishing the helpfulness of them. By that, some tasks would be intervened by the unhelpful features that are useful for other tasks, leading to undesired negative transfer between tasks. In this paper, we design a novel architecture named the Multiple-level Sparse Sharing Model (MSSM), which can learn features selectively and share knowledge across all tasks efficiently. MSSM first employs a field-level sparse connection module (FSCM) to enable much more expressive combinations of feature fields to be learned for generalization across tasks while still allowing for task-specific features to be customized for each task. Furthermore, a cell-level sparse sharing module (CSSM) can recognize the sharing pattern through a set of coding variables that selectively choose which cells to route for a given task. Extensive experimental results on several real-world datasets show that MSSM outperforms SOTA models significantly in terms of AUC and LogLoss metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
伦语发布了新的文献求助10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
xuzj应助科研通管家采纳,获得10
1秒前
xuzj应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
yull完成签到,获得积分10
2秒前
小巧书雪完成签到,获得积分10
5秒前
大大怪将军完成签到,获得积分10
6秒前
哈哈哈完成签到 ,获得积分0
6秒前
小怪完成签到,获得积分10
7秒前
爱吃泡芙完成签到,获得积分10
8秒前
白桃战士完成签到,获得积分10
9秒前
11秒前
qingchenwuhou完成签到 ,获得积分10
11秒前
XXX完成签到,获得积分10
12秒前
锡嘻完成签到 ,获得积分10
12秒前
13秒前
彗星入梦完成签到 ,获得积分10
13秒前
恋恋青葡萄完成签到,获得积分10
13秒前
隐形万言完成签到,获得积分10
15秒前
Time完成签到,获得积分10
15秒前
土木研学僧完成签到,获得积分10
16秒前
yjy完成签到 ,获得积分10
16秒前
A溶大美噶完成签到,获得积分10
16秒前
yar应助萨尔莫斯采纳,获得10
17秒前
Will发布了新的文献求助10
17秒前
美好的鹏笑完成签到,获得积分10
19秒前
啦啦啦啦啦完成签到,获得积分10
19秒前
LYegoist完成签到,获得积分10
21秒前
可爱的小丸子完成签到,获得积分10
21秒前
一川烟叶完成签到,获得积分10
23秒前
23秒前
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022