MSSM: A Multiple-level Sparse Sharing Model for Efficient Multi-Task Learning

计算机科学 多任务学习 任务(项目管理) 人工智能 机器学习 学习迁移 集合(抽象数据类型) 领域(数学) 特征(语言学) 一般化 程序设计语言 数学 语言学 数学分析 哲学 经济 管理 纯数学
作者
Ke Ding,Xin Dong,Yong He,Lei Cheng,Chilin Fu,Zhaoxin Huan,Hai Li,Tan Yan,Liang Zhang,Xiaolu Zhang,Linjian Mo
标识
DOI:10.1145/3404835.3463022
摘要

Multi-task learning(MTL) is an open and challenging problem in various real-world applications. The typical way of conducting multi-task learning is establishing some global parameter sharing mechanism across all tasks or assigning each task an individual set of parameters with cross-connections between tasks. However, for most existing approaches, all tasks just thoroughly or proportionally share all the features without distinguishing the helpfulness of them. By that, some tasks would be intervened by the unhelpful features that are useful for other tasks, leading to undesired negative transfer between tasks. In this paper, we design a novel architecture named the Multiple-level Sparse Sharing Model (MSSM), which can learn features selectively and share knowledge across all tasks efficiently. MSSM first employs a field-level sparse connection module (FSCM) to enable much more expressive combinations of feature fields to be learned for generalization across tasks while still allowing for task-specific features to be customized for each task. Furthermore, a cell-level sparse sharing module (CSSM) can recognize the sharing pattern through a set of coding variables that selectively choose which cells to route for a given task. Extensive experimental results on several real-world datasets show that MSSM outperforms SOTA models significantly in terms of AUC and LogLoss metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助澹台灭明采纳,获得10
1秒前
Oreaee完成签到,获得积分10
2秒前
fanfanzzz完成签到,获得积分10
2秒前
英姑应助MADKAI采纳,获得10
2秒前
mammoth发布了新的文献求助20
2秒前
2秒前
大个应助唉呦嘿采纳,获得10
3秒前
4秒前
Jenny应助觅桃乌龙采纳,获得10
4秒前
JL完成签到,获得积分10
5秒前
5秒前
123完成签到,获得积分10
5秒前
赘婿应助eric曾采纳,获得10
6秒前
6秒前
善学以致用应助小虎采纳,获得30
6秒前
lb发布了新的文献求助10
6秒前
自由的笑容完成签到,获得积分10
6秒前
7秒前
7秒前
mammoth完成签到,获得积分10
7秒前
科研通AI5应助仄兀采纳,获得10
8秒前
8秒前
8秒前
fishhh完成签到,获得积分10
8秒前
ruxing应助胖豆采纳,获得10
9秒前
good完成签到,获得积分10
9秒前
prosperp应助科研通管家采纳,获得10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
sweetbearm应助科研通管家采纳,获得10
9秒前
1221211应助科研通管家采纳,获得10
9秒前
9秒前
liudiqiu应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得30
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762