Dual-Energy CT–Based Nomogram for Decoding HER2 Status in Patients With Gastric Cancer

医学 列线图 癌症 对偶(语法数字) 放射科 内科学 肿瘤科 核医学 文学类 艺术
作者
Huiping Zhao,Weiran Li,Wenpeng Huang,Yujiao Yang,Wei Shen,Pan Liang,Jianbo Gao
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:216 (6): 1539-1548 被引量:15
标识
DOI:10.2214/ajr.20.23528
摘要

OBJECTIVE. The purpose of this study was to develop and evaluate a dual-energy CT (DECT)-based nomogram for noninvasive identification of the status of human epidermal growth factor receptor 2 (HER2; also known as ERBB2) expression in gastric cancer (GC). MATERIALS AND METHODS. A total of 206 patients with histologically proven GC who underwent pretreatment DECT were retrospectively recruited and randomly allocated to a training cohort (n = 144) or a test cohort (n = 62). Information on clinical characteristics, qualitative imaging features, and quantitative DECT parameters was collected. Univariate analysis and multivariate logistic regression were implemented to screen independent predictors of HER2 status. An individualized nomogram was built, and its discrimination, calibration, and clinical usefulness were assessed. RESULTS. Tumor location, the iodine concentration of the tumor in the venous phase, and the normalized iodine concentration of the tumor in the venous phase were significant factors predictive of HER2 status (all p < .05). After these three indicators were integrated, the proposed nomogram showed a favorable diagnostic performance, with AUCs of 0.807 (95% CI, 0.718-0.897) in the training cohort and 0.815 (95% CI, 0.661-0.968) in the test cohort. The nomogram showed a preferable fitting (all p > .05 by the Hosmer-Lemeshow test) and would offer more net benefits than simple default strategies within a wide range of threshold probabilities in both cohorts. CONCLUSION. The DECT-based nomogram has great application potential in terms of detecting HER2 status in GC, and can serve as a novel substitute for invasive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助lss采纳,获得10
1秒前
领导范儿应助姿势采纳,获得10
1秒前
依居发布了新的文献求助10
2秒前
pp完成签到,获得积分20
2秒前
漂洋过海发布了新的文献求助10
2秒前
现实的行云完成签到,获得积分20
2秒前
西红柿不吃皮完成签到 ,获得积分10
2秒前
Doctor Tang发布了新的文献求助10
3秒前
稳重的若雁应助a均采纳,获得10
5秒前
情怀应助现实的行云采纳,获得10
5秒前
NexusExplorer应助鹿凡雁采纳,获得10
5秒前
蝙蝠侠的腿毛完成签到,获得积分10
6秒前
顾矜应助务实的犀牛采纳,获得10
7秒前
7秒前
8秒前
橙子给橙子的求助进行了留言
8秒前
黄龙完成签到,获得积分10
8秒前
8秒前
10秒前
舒服的牛排完成签到,获得积分10
11秒前
zheng完成签到,获得积分10
11秒前
12秒前
张青争完成签到,获得积分10
12秒前
viho发布了新的文献求助10
13秒前
13秒前
13秒前
mtice发布了新的文献求助10
13秒前
13秒前
un发布了新的文献求助10
13秒前
zheng发布了新的文献求助10
14秒前
业余专家发布了新的文献求助10
14秒前
15秒前
17秒前
17秒前
聪明钢铁侠完成签到,获得积分10
18秒前
YYxz发布了新的文献求助10
18秒前
18秒前
nicole发布了新的文献求助10
18秒前
漂洋过海完成签到,获得积分10
18秒前
彭于晏应助球球采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515049
求助须知:如何正确求助?哪些是违规求助? 3097391
关于积分的说明 9235300
捐赠科研通 2792358
什么是DOI,文献DOI怎么找? 1532422
邀请新用户注册赠送积分活动 712063
科研通“疑难数据库(出版商)”最低求助积分说明 707107